ntxbsy5 0 214 '−' '' minus 0 '·' '' periodcentered 1 '×' '' multiply 2 '∗' '' asteriskmath 3 '÷' '' divide 4 '⋄' '' diamondmath 5 '±' '' plusminus 6 '∓' '' minusplus 7 '⊕' '' circleplus 8 '⊖' '' circleminus 9 '⊗' '' circlemultiply 10 '⊘' '' circledivide 11 '⊙' '' circledot 12 '⃝' '' circlecopyrt 13 '◦' '' openbullet 14 '•' '' bullet 15 '≍' '' equivasymptotic 16 '≡' '' equivalence 17 '⊆' '' reflexsubset 18 '⊇' '' reflexsuperset 19 '≤' '' lessequal 20 '≥' '' greaterequal 21 '≼' '' precedesequal 22 '≽' '' followsequal 23 '∼' '' similar 24 '≈' '' approxequal 25 '⊂' '' propersubset 26 '⊃' '' propersuperset 27 '≪' '' lessmuch 28 '≫' '' greatermuch 29 '≺' '' precedes 30 '≻' '' follows 31 '←' '' arrowleft 32 '→' '' arrowright 33 '↑' '' arrowup 34 '↓' '' arrowdown 35 '↔' '' arrowboth 36 '↗' '' arrownortheast 37 '↘' '' arrowsoutheast 38 '≃' '' similarequal 39 '⇐' '' arrowdblleft 40 '⇒' '' arrowdblright 41 '⇑' '' arrowdblup 42 '⇓' '' arrowdbldown 43 '⇔' '' arrowdblboth 44 '↖' '' arrownorthwest 45 '↙' '' arrowsouthwest 46 '∝' '' proportional 47 '′' '' prime 48 '∞' '' infinity 49 '∈' '' element 50 '∋' '' owner 51 '△' '' triangle 52 '▽' '' triangleinv 53 '̸' '' negationslash 54 '' '' '∀' '' universal 56 '∃' '' existential 57 '¬' '' logicalnot 58 '∅' '' emptyset 59 'ℜ' '' Rfractur 60 'ℑ' '' Ifractur 61 '⊤' '' latticetop 62 '⊥' '' perpendicular 63 'ℵ' '' aleph 64 'A' '' A 65 'B' '' B 66 'C' '' C 67 'D' '' D 68 'E' '' E 69 'F' '' F 70 'G' '' G 71 'H' '' H 72 'I' '' I 73 'J' '' J 74 'K' '' K 75 'L' '' L 76 'M' '' M 77 'N' '' N 78 'O' '' O 79 'P' '' P 80 'Q' '' Q 81 'R' '' R 82 'S' '' S 83 'T' '' T 84 'U' '' U 85 'V' '' V 86 'W' '' W 87 'X' '' X 88 'Y' '' Y 89 'Z' '' Z 90 '∪' '' union 91 '∩' '' intersection 92 '⊎' '' unionmulti 93 '∧' '' logicaland 94 '∨' '' logicalor 95 '⊢' '' turnstileleft 96 '⊣' '' turnstileright 97 '⌊' '' floorleft 98 '⌋' '' floorright 99 '⌈' '' ceilingleft 100 '⌉' '' ceilingright 101 '{' '' braceleft 102 '}' '' braceright 103 '⟨' '' angbracketleft 104 '⟩' '' angbracketright 105 '|' '' bar 106 '∥' '' bardbl 107 '↕' '' arrowbothv 108 '⇕' '' arrowdblbothv 109 '\' '' backslash 110 '≀' '' wreathproduct 111 '√' '' radical 112 '⨿' '' coproduct 113 '∇' '' nabla 114 '∫' '' integral 115 '⊔' '' unionsq 116 '⊓' '' intersectionsq 117 '⊑' '' subsetsqequal 118 '⊒' '' supersetsqequal 119 '§' '' section 120 '†' '' dagger 121 '‡' '' daggerdbl 122 '¶' '' paragraph 123 '♣' '' club 124 '♢' '' diamond 125 '♡' '' heart 126 '♠' '' spade 127 '∫' '' uni222B.sm 128 '∬' '' uni222C.sm 129 '∭' '' uni222D.sm 130 '∮' '' uni222E.sm 131 '∯' '' uni222F.sm 132 '∰' '' uni2230.sm 133 '∲' '' uni2232.sm 134 '∳' '' uni2233.sm 135 '⨋' '' uni2A0B.sm 136 '⨌' '' uni2A0C.sm 137 '⨏' '' uni2A0F.sm 138 '⨖' '' uni2A16.sm 139 '∫' '' uni222B.upsm 140 '∬' '' uni222C.upsm 141 '∭' '' uni222D.upsm 142 '∮' '' uni222E.upsm 143 '∯' '' uni222F.upsm 144 '∰' '' uni2230.upsm 145 '∲' '' uni2232.upsm 146 '∳' '' uni2233.upsm 147 '⨋' '' uni2A0B.upsm 148 '⨌' '' uni2A0C.upsm 149 '⨏' '' uni2A0F.upsm 150 '⨖' '' uni2A16.upsm 151 ' ' '' product.sm 152 '∑' '' summation.sm 153 '∄' '' nexists 154 '⌀' '' emptyset.alt1 155 '∅' '' emptyset.alt2 156 '/' '' slash 157 '`' '' grave 158 '´' '' acute 159 'ˆ' '' circumflex 160 '˜' '' tilde 161 '¯' '' macron 162 '˘' '' breve 163 '̇' '' dotacc 164 '̈' '' ddotacc 165 '˚' '' ring 166 'ˇ' '' caron 167 '⃛' '' dddotacc 168 '⃖' '' lvec 169 '⃒' '' harpoonacc 170 '⃐' '' lharpoonacc 171 '⃡' '' lrvec 172 '⃡' '' lrharpoonacc 173 '⃗' '' vec 174 '͡' '' arcwide 175 '͡︁' '' arcwider 176 '͡︂' '' arcwiderr 177 '͡︃' '' arcwidest 178 '͡︄' '' arcwideult 179 '͐͡' '' oarcwide 180 '͡︁͐' '' oarcwider 181 '͡︂͐' '' oarcwiderr 182 '͡︃͐' '' oarcwidest 183 '͡︄͐' '' oarcwideult 184 '(' '' parenleft 185 ')' '' parenright 186 '[' '' bracketleft 187 ']' '' bracketright 188 '̄̄' '' barbar 189 '̄̂' '' bartilde 190 '̄̃' '' barhat 191 '̂̄' '' tildebar 192 '̂̂' '' tildetilde 193 '̂̃' '' tildehat 194 '̃̄' '' hatbar 195 '̃̂' '' hattilde 196 '̃̃' '' hathat 197 '⃗' '' uni20D7.rt 198 '⃗' '' uni20D7.ex 199 '⃜' '' ddddotacc 200 '⟦' '' dblbracketleft 201 '⟧' '' dblbracketright 202 'ᵀ' '' transpose 203 '⊹' '' hermitconj 204 '⫫' '' uni2AEB 205 '⫫∕' '' nPerp 206 '+' '' plus 207 '·' '' periodcentered.B 208 '⋅' '' periodcentered.BB 209 '○' '' openbullet.S 210 '∙' '' bullet.SSS 211 '•' '' bullet.SS 212 '◅' '' bullet.S 213 '′' '' prime.var 214 ntxbsy5 0 214 htfcss: ntxbsy5 font-family: 'txbsys', serif;