stix2-mathrm-bold 0 255 '𝚪' '' u1D6AA 0 % generated from stix2-mathrm-bold.tfm, 2023-02-09-16:37 '𝚫' '' u1D6AB 1 % Copyright 2023 TeX Users Group '𝚯' '' u1D6AF 2 % '𝚲' '' u1D6B2 3 % This work may be distributed and/or modified under the '𝚵' '' u1D6B5 4 % conditions of the LaTeX Project Public License, either '𝚷' '' u1D6B7 5 % version 1.3c of this license or (at your option) any '𝚺' '' u1D6BA 6 % later version. The latest version of this license is in '𝚼' '' u1D6BC 7 % http://www.latex-project.org/lppl.txt '𝚽' '' u1D6BD 8 % and version 1.3c or later is part of all distributions '𝚿' '' u1D6BF 9 % of LaTeX version 2005/12/01 or later. '𝛀' '' u1D6C0 10 % '𝛂' '' u1D6C2 11 % This work has the LPPL maintenance status "maintained". '𝛃' '' u1D6C3 12 % '𝛄' '' u1D6C4 13 % The Current Maintainer of this work '𝛅' '' u1D6C5 14 % is the TeX4ht Project . '𝛜' '' u1D6DC 15 % '𝛇' '' u1D6C7 16 % If you modify this program, changing the '𝛈' '' u1D6C8 17 % version identification would be appreciated. '𝛉' '' u1D6C9 18 '𝛊' '' u1D6CA 19 '𝛋' '' u1D6CB 20 '𝛌' '' u1D6CC 21 '𝛍' '' u1D6CD 22 '𝛎' '' u1D6CE 23 '𝛏' '' u1D6CF 24 '𝛑' '' u1D6D1 25 '𝛒' '' u1D6D2 26 '𝛔' '' u1D6D4 27 '𝛕' '' u1D6D5 28 '𝛖' '' u1D6D6 29 '𝛟' '' u1D6DF 30 '𝛘' '' u1D6D8 31 '𝛙' '' u1D6D9 32 '𝛚' '' u1D6DA 33 '𝛆' '' u1D6C6 34 '𝛝' '' u1D6DD 35 '𝛡' '' u1D6E1 36 '𝛠' '' u1D6E0 37 '𝛓' '' u1D6D3 38 '𝛗' '' u1D6D7 39 '𝛁' '' u1D6C1 40 '𝛛' '' u1D6DB 41 '−' '' uni2212 42 '+' '' plus 43 '±' '' plusminus 44 '∓' '' uni2213 45 '(' '' parenleft 46 ')' '' parenright 47 '𝟎' '' u1D7CE 48 '𝟏' '' u1D7CF 49 '𝟐' '' u1D7D0 50 '𝟑' '' u1D7D1 51 '𝟒' '' u1D7D2 52 '𝟓' '' u1D7D3 53 '𝟔' '' u1D7D4 54 '𝟕' '' u1D7D5 55 '𝟖' '' u1D7D6 56 '𝟗' '' u1D7D7 57 '∶' '' uni2236 58 ';' '' semicolon 59 '∗' '' uni2217 60 '=' '' equal 61 '$' '' dollar 62 '?' '' question 63 '!' '' exclam 64 '𝐀' '' u1D400 65 '𝐁' '' u1D401 66 '𝐂' '' u1D402 67 '𝐃' '' u1D403 68 '𝐄' '' u1D404 69 '𝐅' '' u1D405 70 '𝐆' '' u1D406 71 '𝐇' '' u1D407 72 '𝐈' '' u1D408 73 '𝐉' '' u1D409 74 '𝐊' '' u1D40A 75 '𝐋' '' u1D40B 76 '𝐌' '' u1D40C 77 '𝐍' '' u1D40D 78 '𝐎' '' u1D40E 79 '𝐏' '' u1D40F 80 '𝐐' '' u1D410 81 '𝐑' '' u1D411 82 '𝐒' '' u1D412 83 '𝐓' '' u1D413 84 '𝐔' '' u1D414 85 '𝐕' '' u1D415 86 '𝐖' '' u1D416 87 '𝐗' '' u1D417 88 '𝐘' '' u1D418 89 '𝐙' '' u1D419 90 '[' '' bracketleft 91 '∖' '' uni2216.var 92 ']' '' bracketright 93 '{' '' braceleft 94 '∕' '' uni2215 95 '}' '' braceright 96 '𝐚' '' u1D41A 97 '𝐛' '' u1D41B 98 '𝐜' '' u1D41C 99 '𝐝' '' u1D41D 100 '𝐞' '' u1D41E 101 '𝐟' '' u1D41F 102 '𝐠' '' u1D420 103 '𝐡' '' u1D421 104 '𝐢' '' u1D422 105 '𝐣' '' u1D423 106 '𝐤' '' u1D424 107 '𝐥' '' u1D425 108 '𝐦' '' u1D426 109 '𝐧' '' u1D427 110 '𝐨' '' u1D428 111 '𝐩' '' u1D429 112 '𝐪' '' u1D42A 113 '𝐫' '' u1D42B 114 '𝐬' '' u1D42C 115 '𝐭' '' u1D42D 116 '𝐮' '' u1D42E 117 '𝐯' '' u1D42F 118 '𝐰' '' u1D430 119 '𝐱' '' u1D431 120 '𝐲' '' u1D432 121 '𝐳' '' u1D433 122 '𝐢' '' u1D422.dotless 123 '𝐣' '' u1D423.dotless 124 '#' '' numbersign 125 '%' '' percent 126 '’' '' quoteright 127 '̀' '' uni0300 128 '́' '' uni0301 129 '̂' '' uni0302 130 '̃' '' uni0303 131 '̄' '' uni0304 132 '̆' '' uni0306 133 '̇' '' uni0307 134 '̈' '' uni0308 135 '̉' '' uni0309 136 '̊' '' uni030A 137 '̌' '' uni030C 138 '̐' '' uni0310 139 '̒' '' uni0312 140 '̕' '' uni0315 141 '̚' '' uni031A 142 '⃐' '' uni20D0 143 '⃑' '' uni20D1 144 '⃖' '' uni20D6 145 '⃗' '' uni20D7 146 '⃛' '' uni20DB 147 '⃜' '' uni20DC 148 '⃡' '' uni20E1 149 '⃧' '' uni20E7 150 '⃩' '' uni20E9 151 '⃰' '' uni20F0 152 '&' '' ampersand 153 '@' '' at 154 '¬' '' logicalnot 155 '·' '' periodcentered 156 '×' '' multiply 157 '⪯' '' uni2AAF 158 '÷' '' divide 159 'Ƶ' '' uni01B5 160 '̸' '' uni0338 161 '϶' '' uni03F6 162 '†' '' dagger 163 '‡' '' daggerdbl 164 '•' '' bullet 165 '‥' '' twodotenleader 166 '…' '' ellipsis 167 '′' '' minute.var 168 '″' '' second.var 169 '' '' primetriple.var 170 '­' '' primequad.var 171 '‵' '' primereversed.var 172 '' '' primedblreversed.var 173 '‸' '' uni2038 174 '‼' '' exclamdbl 175 '⁃' '' uni2043 176 '⁄' '' fraction 177 '⁇' '' uni2047 178 '⁐' '' uni2050 179 '' '' primetriplereversed.var 180 '⃒' '' uni20D2 181 '⃝' '' uni20DD 182 '⃞' '' uni20DE 183 '⃟' '' uni20DF 184 '⃤' '' uni20E4 185 'ℇ' '' uni2107 186 '℧' '' uni2127 187 '℩' '' uni2129 188 'Å' '' uni212B 189 'Ⅎ' '' uni2132 190 '⅁' '' uni2141 191 '⅂' '' uni2142 192 '⅃' '' uni2143 193 '⅄' '' uni2144 194 '⅊' '' uni214A 195 '⅋' '' uni214B 196 '∀' '' uni2200 197 '∁' '' uni2201 198 '∃' '' uni2203 199 '∄' '' uni2204 200 '∅' '' uni2205 201 '∆' '' uni2206 202 '∈' '' uni2208 203 '∉' '' uni2209 204 '∊' '' uni220A 205 '∋' '' uni220B 206 '∌' '' uni220C 207 '∍' '' uni220D 208 '∎' '' uni220E 209 '∔' '' uni2214 210 '⪰' '' uni2AB0 211 '∖' '' uni2216 212 '∘' '' uni2218 213 '∙' '' uni2219 214 '∝' '' uni221D 215 '∞' '' uni221E 216 '∟' '' uni221F 217 '∠' '' uni2220 218 '∡' '' uni2221 219 '∢' '' uni2222 220 '∣' '' uni2223 221 '∤' '' uni2224 222 '∥' '' uni2225 223 '∦' '' uni2226 224 '∧' '' uni2227 225 '∨' '' uni2228 226 '∩' '' uni2229 227 '∪' '' uni222A 228 '∴' '' uni2234 229 '∵' '' uni2235 230 '∅' '' uni2205.var 231 '∷' '' uni2237 232 '∸' '' uni2238 233 '∹' '' uni2239 234 '∺' '' uni223A 235 '∻' '' uni223B 236 '∼' '' uni223C 237 '∽' '' uni223D 238 '∾' '' uni223E 239 '∿' '' uni223F 240 '≀' '' uni2240 241 '≁' '' uni2241 242 '≂' '' uni2242 243 '≃' '' uni2243 244 '≄' '' uni2244 245 '≅' '' uni2245 246 '≆' '' uni2246 247 '≇' '' uni2247 248 '≈' '' uni2248 249 '≉' '' uni2249 250 '≊' '' uni224A 251 '≋' '' uni224B 252 '≌' '' uni224C 253 '≍' '' uni224D 254 '≎' '' uni224E 255 stix2-mathrm-bold 0 255 htfcss: stix2-mathrm-bold font-weight: bold; font-family: 'STIX Two Math', serif;