stix2-mathfrak-bold 0 255 '♾' '' uni267E 0 % generated from stix2-mathfrak-bold.tfm, 2023-02-09-16:37 '➛' '' uni279B 1 % Copyright 2023 TeX Users Group '⟀' '' uni27C0 2 % '⟁' '' uni27C1 3 % This work may be distributed and/or modified under the '⟂' '' uni27C2 4 % conditions of the LaTeX Project Public License, either '⟃' '' uni27C3 5 % version 1.3c of this license or (at your option) any '⟄' '' uni27C4 6 % later version. The latest version of this license is in '⟅' '' uni27C5 7 % http://www.latex-project.org/lppl.txt '⟆' '' uni27C6 8 % and version 1.3c or later is part of all distributions '⟇' '' uni27C7 9 % of LaTeX version 2005/12/01 or later. '⟈' '' uni27C8 10 % '⟉' '' uni27C9 11 % This work has the LPPL maintenance status "maintained". '⟐' '' uni27D0 12 % '⟑' '' uni27D1 13 % The Current Maintainer of this work '⟒' '' uni27D2 14 % is the TeX4ht Project . '⟓' '' uni27D3 15 % '⟔' '' uni27D4 16 % If you modify this program, changing the '⟕' '' uni27D5 17 % version identification would be appreciated. '⟖' '' uni27D6 18 '⟗' '' uni27D7 19 '⟘' '' uni27D8 20 '⟙' '' uni27D9 21 '⟚' '' uni27DA 22 '⟛' '' uni27DB 23 '⟜' '' uni27DC 24 '⟝' '' uni27DD 25 '⟞' '' uni27DE 26 '⟟' '' uni27DF 27 '⟠' '' uni27E0 28 '⟡' '' uni27E1 29 '⟢' '' uni27E2 30 '⟣' '' uni27E3 31 '⟤' '' uni27E4 32 '⟥' '' uni27E5 33 '⟬' '' uni27EC 34 '⟭' '' uni27ED 35 '⦁' '' uni2981 36 '⦂' '' uni2982 37 '⦇' '' uni2987 38 '⦈' '' uni2988 39 '⦉' '' uni2989 40 '⦊' '' uni298A 41 '⦋' '' uni298B 42 '⦌' '' uni298C 43 '⦍' '' uni298D 44 '⦎' '' uni298E 45 '⦏' '' uni298F 46 '⦐' '' uni2990 47 '⦑' '' uni2991 48 '⦒' '' uni2992 49 '⦓' '' uni2993 50 '⦔' '' uni2994 51 '⦕' '' uni2995 52 '⦖' '' uni2996 53 '⦗' '' uni2997 54 '⦘' '' uni2998 55 '⦙' '' uni2999 56 '⦚' '' uni299A 57 '⦛' '' uni299B 58 '⦜' '' uni299C 59 '⦝' '' uni299D 60 '⦞' '' uni299E 61 '⦟' '' uni299F 62 '⦠' '' uni29A0 63 '⦡' '' uni29A1 64 '𝕬' '' u1D56C 65 '𝕭' '' u1D56D 66 '𝕮' '' u1D56E 67 '𝕯' '' u1D56F 68 '𝕰' '' u1D570 69 '𝕱' '' u1D571 70 '𝕲' '' u1D572 71 '𝕳' '' u1D573 72 '𝕴' '' u1D574 73 '𝕵' '' u1D575 74 '𝕶' '' u1D576 75 '𝕷' '' u1D577 76 '𝕸' '' u1D578 77 '𝕹' '' u1D579 78 '𝕺' '' u1D57A 79 '𝕻' '' u1D57B 80 '𝕼' '' u1D57C 81 '𝕽' '' u1D57D 82 '𝕾' '' u1D57E 83 '𝕿' '' u1D57F 84 '𝖀' '' u1D580 85 '𝖁' '' u1D581 86 '𝖂' '' u1D582 87 '𝖃' '' u1D583 88 '𝖄' '' u1D584 89 '𝖅' '' u1D585 90 '⦢' '' uni29A2 91 '⦣' '' uni29A3 92 '⦤' '' uni29A4 93 '⦥' '' uni29A5 94 '⦦' '' uni29A6 95 '⦧' '' uni29A7 96 '𝖆' '' u1D586 97 '𝖇' '' u1D587 98 '𝖈' '' u1D588 99 '𝖉' '' u1D589 100 '𝖊' '' u1D58A 101 '𝖋' '' u1D58B 102 '𝖌' '' u1D58C 103 '𝖍' '' u1D58D 104 '𝖎' '' u1D58E 105 '𝖏' '' u1D58F 106 '𝖐' '' u1D590 107 '𝖑' '' u1D591 108 '𝖒' '' u1D592 109 '𝖓' '' u1D593 110 '𝖔' '' u1D594 111 '𝖕' '' u1D595 112 '𝖖' '' u1D596 113 '𝖗' '' u1D597 114 '𝖘' '' u1D598 115 '𝖙' '' u1D599 116 '𝖚' '' u1D59A 117 '𝖛' '' u1D59B 118 '𝖜' '' u1D59C 119 '𝖝' '' u1D59D 120 '𝖞' '' u1D59E 121 '𝖟' '' u1D59F 122 '𝖎' '' u1D58E.dotless 123 '𝖏' '' u1D58F.dotless 124 '⦨' '' uni29A8 125 '⦩' '' uni29A9 126 '⁀' '' uni2040 127 '̀' '' uni0300 128 '́' '' uni0301 129 '̂' '' uni0302 130 '̃' '' uni0303 131 '̄' '' uni0304 132 '̆' '' uni0306 133 '̇' '' uni0307 134 '̈' '' uni0308 135 '̉' '' uni0309 136 '̊' '' uni030A 137 '̌' '' uni030C 138 '̐' '' uni0310 139 '̒' '' uni0312 140 '̕' '' uni0315 141 '̚' '' uni031A 142 '⃐' '' uni20D0 143 '⃑' '' uni20D1 144 '⃖' '' uni20D6 145 '⃗' '' uni20D7 146 '⃛' '' uni20DB 147 '⃜' '' uni20DC 148 '⃡' '' uni20E1 149 '⃧' '' uni20E7 150 '⃩' '' uni20E9 151 '⃰' '' uni20F0 152 '⦪' '' uni29AA 153 '⦫' '' uni29AB 154 '⦬' '' uni29AC 155 '⦭' '' uni29AD 156 '⦮' '' uni29AE 157 '⦯' '' uni29AF 158 '⦰' '' uni29B0 159 '⦱' '' uni29B1 160 '⦲' '' uni29B2 161 '⦳' '' uni29B3 162 '⦴' '' uni29B4 163 '⦵' '' uni29B5 164 '⦶' '' uni29B6 165 '⦷' '' uni29B7 166 '⦸' '' uni29B8 167 '⦹' '' uni29B9 168 '⦺' '' uni29BA 169 '⦻' '' uni29BB 170 '⦼' '' uni29BC 171 '⦽' '' uni29BD 172 '⦾' '' uni29BE 173 '⦿' '' uni29BF 174 '⧀' '' uni29C0 175 '⧁' '' uni29C1 176 '⧂' '' uni29C2 177 '⧃' '' uni29C3 178 '⧄' '' uni29C4 179 '⧅' '' uni29C5 180 '⧆' '' uni29C6 181 '⧇' '' uni29C7 182 '⧈' '' uni29C8 183 '⧉' '' uni29C9 184 '⧊' '' uni29CA 185 '⧋' '' uni29CB 186 '⧌' '' uni29CC 187 '⧍' '' uni29CD 188 '⧎' '' uni29CE 189 '⧏' '' uni29CF 190 '⧐' '' uni29D0 191 '⧑' '' uni29D1 192 '⧒' '' uni29D2 193 '⧓' '' uni29D3 194 '⧔' '' uni29D4 195 '⧕' '' uni29D5 196 '⧖' '' uni29D6 197 '⧗' '' uni29D7 198 '⧘' '' uni29D8 199 '⧙' '' uni29D9 200 '⧚' '' uni29DA 201 '⧛' '' uni29DB 202 '⧜' '' uni29DC 203 '⧝' '' uni29DD 204 '⧞' '' uni29DE 205 '⧟' '' uni29DF 206 '⧠' '' uni29E0 207 '⧡' '' uni29E1 208 '⧢' '' uni29E2 209 '⧣' '' uni29E3 210 '⧤' '' uni29E4 211 '⧥' '' uni29E5 212 '⧦' '' uni29E6 213 '⧧' '' uni29E7 214 '⧨' '' uni29E8 215 '⧩' '' uni29E9 216 '⧪' '' uni29EA 217 '⧫' '' uni29EB 218 '⧬' '' uni29EC 219 '⧭' '' uni29ED 220 '⧮' '' uni29EE 221 '⧯' '' uni29EF 222 '⧰' '' uni29F0 223 '⧱' '' uni29F1 224 '⧲' '' uni29F2 225 '⧳' '' uni29F3 226 '⧴' '' uni29F4 227 '⧵' '' uni29F5 228 '⧶' '' uni29F6 229 '⧷' '' uni29F7 230 '⧺' '' uni29FA 231 '⧻' '' uni29FB 232 '⧼' '' uni29FC 233 '⧽' '' uni29FD 234 '⧾' '' uni29FE 235 '⧿' '' uni29FF 236 '⨝' '' uni2A1D 237 '⨞' '' uni2A1E 238 '⨟' '' uni2A1F 239 '⨠' '' uni2A20 240 '⨡' '' uni2A21 241 '⨢' '' uni2A22 242 '⨣' '' uni2A23 243 '⨤' '' uni2A24 244 '⨥' '' uni2A25 245 '⨦' '' uni2A26 246 '⨧' '' uni2A27 247 '⨨' '' uni2A28 248 '⨩' '' uni2A29 249 '⨪' '' uni2A2A 250 '⨫' '' uni2A2B 251 '⨬' '' uni2A2C 252 '⨭' '' uni2A2D 253 '⨮' '' uni2A2E 254 '⨯' '' uni2A2F 255 stix2-mathfrak-bold 0 255 htfcss: stix2-mathfrak-bold font-weight: bold; font-family: 'STIX Two Math', serif;