stix-mathsfit 0 255 '' '' uniE1C1 0 % generated from stix-mathsfit.tfm, 2022-11-15-12:30 '' '' uniE1C2 1 % Copyright 2022 TeX Users Group '' '' uniE1C6 2 % '' '' uniE1C9 3 % This work may be distributed and/or modified under the '' '' uniE1CC 4 % conditions of the LaTeX Project Public License, either '' '' uniE1CE 5 % version 1.3c of this license or (at your option) any '' '' uniE1D1 6 % later version. The latest version of this license is in '' '' uniE1D3 7 % http://www.latex-project.org/lppl.txt '' '' uniE1D4 8 % and version 1.3c or later is part of all distributions '' '' uniE1D6 9 % of LaTeX version 2005/12/01 or later. '' '' uniE1D7 10 % '' '' uniE1D8 11 % This work has the LPPL maintenance status "maintained". '' '' uniE1D9 12 % '' '' uniE1DA 13 % The Current Maintainer of this work '' '' uniE1DB 14 % is the TeX4ht Project . '' '' uniE1F1 15 % '' '' uniE1DD 16 % If you modify this program, changing the '' '' uniE1DE 17 % version identification would be appreciated. '' '' uniE1DF 18 '' '' uniE1E0 19 '' '' uniE1E1 20 '' '' uniE1E2 21 '' '' uniE1E3 22 '' '' uniE1E4 23 '' '' uniE1E5 24 '' '' uniE1E7 25 '' '' uniE1E8 26 '' '' uniE1EA 27 '' '' uniE1EB 28 '' '' uniE1EC 29 '' '' uniE1F3 30 '' '' uniE1EE 31 '' '' uniE1EF 32 '' '' uniE1F0 33 '' '' uniE1DC 34 '' '' uniE1F2 35 '' '' uniE1F5 36 '' '' uniE1F4 37 '' '' uniE1E9 38 '' '' uniE1ED 39 '∇' '' nabla.sfi 40 '' '' uniE1BE 41 '⬲' '' uni2B32 42 '⬳' '' uni2B33 43 '⬴' '' uni2B34 44 '⬵' '' uni2B35 45 '⬶' '' uni2B36 46 '⬷' '' uni2B37 47 '𝟢' '' u1D7E2 48 '𝟣' '' u1D7E3 49 '𝟤' '' u1D7E4 50 '𝟥' '' u1D7E5 51 '𝟦' '' u1D7E6 52 '𝟧' '' u1D7E7 53 '𝟨' '' u1D7E8 54 '𝟩' '' u1D7E9 55 '𝟪' '' u1D7EA 56 '𝟫' '' u1D7EB 57 '⬸' '' uni2B38 58 '⬹' '' uni2B39 59 '⬺' '' uni2B3A 60 '⬻' '' uni2B3B 61 '⬼' '' uni2B3C 62 '⬽' '' uni2B3D 63 '⬾' '' uni2B3E 64 '𝘈' '' u1D608 65 '𝘉' '' u1D609 66 '𝘊' '' u1D60A 67 '𝘋' '' u1D60B 68 '𝘌' '' u1D60C 69 '𝘍' '' u1D60D 70 '𝘎' '' u1D60E 71 '𝘏' '' u1D60F 72 '𝘐' '' u1D610 73 '𝘑' '' u1D611 74 '𝘒' '' u1D612 75 '𝘓' '' u1D613 76 '𝘔' '' u1D614 77 '𝘕' '' u1D615 78 '𝘖' '' u1D616 79 '𝘗' '' u1D617 80 '𝘘' '' u1D618 81 '𝘙' '' u1D619 82 '𝘚' '' u1D61A 83 '𝘛' '' u1D61B 84 '𝘜' '' u1D61C 85 '𝘝' '' u1D61D 86 '𝘞' '' u1D61E 87 '𝘟' '' u1D61F 88 '𝘠' '' u1D620 89 '𝘡' '' u1D621 90 '⬿' '' uni2B3F 91 '⭀' '' uni2B40 92 '⭁' '' uni2B41 93 '⭂' '' uni2B42 94 '⭃' '' uni2B43 95 '⭄' '' uni2B44 96 '𝘢' '' u1D622 97 '𝘣' '' u1D623 98 '𝘤' '' u1D624 99 '𝘥' '' u1D625 100 '𝘦' '' u1D626 101 '𝘧' '' u1D627 102 '𝘨' '' u1D628 103 '𝘩' '' u1D629 104 '𝘪' '' u1D62A 105 '𝘫' '' u1D62B 106 '𝘬' '' u1D62C 107 '𝘭' '' u1D62D 108 '𝘮' '' u1D62E 109 '𝘯' '' u1D62F 110 '𝘰' '' u1D630 111 '𝘱' '' u1D631 112 '𝘲' '' u1D632 113 '𝘳' '' u1D633 114 '𝘴' '' u1D634 115 '𝘵' '' u1D635 116 '𝘶' '' u1D636 117 '𝘷' '' u1D637 118 '𝘸' '' u1D638 119 '𝘹' '' u1D639 120 '𝘺' '' u1D63A 121 '𝘻' '' u1D63B 122 '𝘪' '' u1D62A.dtls 123 '𝘫' '' u1D62B.dtls 124 '⭅' '' uni2B45 125 '⭆' '' uni2B46 126 '⁀' '' uni2040 127 '̀' '' uni0300 128 '́' '' uni0301 129 '̂' '' uni0302 130 '̃' '' uni0303 131 '̄' '' uni0304 132 '̆' '' uni0306 133 '̇' '' uni0307 134 '̈' '' uni0308 135 '̉' '' uni0309 136 '̊' '' uni030A 137 '̌' '' uni030C 138 '̐' '' uni0310 139 '̒' '' uni0312 140 '̕' '' uni0315 141 '̚' '' uni031A 142 '⃐' '' uni20D0 143 '⃑' '' uni20D1 144 '⃖' '' uni20D6 145 '⃗' '' uni20D7 146 '⃛' '' uni20DB 147 '⃜' '' uni20DC 148 '⃡' '' uni20E1 149 '⃧' '' uni20E7 150 '⃩' '' uni20E9 151 '⃰' '' uni20F0 152 '⤀' '' uni2900 153 '⤁' '' uni2901 154 '⤂' '' uni2902 155 '⤃' '' uni2903 156 '⤄' '' uni2904 157 '⤅' '' uni2905 158 '⤆' '' uni2906 159 '⤇' '' uni2907 160 '⤈' '' uni2908 161 '⤉' '' uni2909 162 '⬰' '' uni2B30 163 '⬱' '' uni2B31 164 '⤌' '' uni290C 165 '⤍' '' uni290D 166 '⤎' '' uni290E 167 '⤏' '' uni290F 168 '⤐' '' uni2910 169 '⤑' '' uni2911 170 '⤒' '' uni2912 171 '⤓' '' uni2913 172 '⤔' '' uni2914 173 '⤕' '' uni2915 174 '⤖' '' uni2916 175 '⤗' '' uni2917 176 '⤘' '' uni2918 177 '⤙' '' uni2919 178 '⤚' '' uni291A 179 '⤛' '' uni291B 180 '⤜' '' uni291C 181 '⤝' '' uni291D 182 '⤞' '' uni291E 183 '⤟' '' uni291F 184 '⤠' '' uni2920 185 '⤡' '' uni2921 186 '⤢' '' uni2922 187 '⤣' '' uni2923 188 '⤤' '' uni2924 189 '⤥' '' uni2925 190 '⤦' '' uni2926 191 '⤧' '' uni2927 192 '⤨' '' uni2928 193 '⤩' '' uni2929 194 '⤪' '' uni292A 195 '⤫' '' uni292B 196 '⤬' '' uni292C 197 '⤭' '' uni292D 198 '⤮' '' uni292E 199 '⤯' '' uni292F 200 '⤰' '' uni2930 201 '⤱' '' uni2931 202 '⤲' '' uni2932 203 '⤳' '' uni2933 204 '⤴' '' uni2934 205 '⤵' '' uni2935 206 '⤶' '' uni2936 207 '⤷' '' uni2937 208 '⤸' '' uni2938 209 '⤹' '' uni2939 210 '⤺' '' uni293A 211 '⤻' '' uni293B 212 '⤼' '' uni293C 213 '⤽' '' uni293D 214 '⤾' '' uni293E 215 '⤿' '' uni293F 216 '⥀' '' uni2940 217 '⥁' '' uni2941 218 '⥂' '' uni2942 219 '⥃' '' uni2943 220 '⥄' '' uni2944 221 '⥅' '' uni2945 222 '⥆' '' uni2946 223 '⥇' '' uni2947 224 '⥈' '' uni2948 225 '⥉' '' uni2949 226 '⥊' '' uni294A 227 '⥋' '' uni294B 228 '⥌' '' uni294C 229 '⥍' '' uni294D 230 '⥎' '' uni294E 231 '⥏' '' uni294F 232 '⥐' '' uni2950 233 '⥑' '' uni2951 234 '⥒' '' uni2952 235 '⥓' '' uni2953 236 '⥔' '' uni2954 237 '⥕' '' uni2955 238 '⥖' '' uni2956 239 '⥗' '' uni2957 240 '⥘' '' uni2958 241 '⥙' '' uni2959 242 '⥚' '' uni295A 243 '⥛' '' uni295B 244 '⥜' '' uni295C 245 '⥝' '' uni295D 246 '⥞' '' uni295E 247 '⥟' '' uni295F 248 '⥠' '' uni2960 249 '⥡' '' uni2961 250 '⥢' '' uni2962 251 '⥣' '' uni2963 252 '⥤' '' uni2964 253 '⥥' '' uni2965 254 '⥦' '' uni2966 255 stix-mathsfit 0 255 htfcss: stix-mathsfit font-style: italic; font-family: 'STIXMathSans', serif;