stix-mathsfit-bold 0 255 '𝞒' '' u1D792 0 % generated from stix-mathsfit-bold.tfm, 2022-11-15-12:30 '𝞓' '' u1D793 1 % Copyright 2022 TeX Users Group '𝞗' '' u1D797 2 % '𝞚' '' u1D79A 3 % This work may be distributed and/or modified under the '𝞝' '' u1D79D 4 % conditions of the LaTeX Project Public License, either '𝞟' '' u1D79F 5 % version 1.3c of this license or (at your option) any '𝞢' '' u1D7A2 6 % later version. The latest version of this license is in '𝞤' '' u1D7A4 7 % http://www.latex-project.org/lppl.txt '𝞥' '' u1D7A5 8 % and version 1.3c or later is part of all distributions '𝞧' '' u1D7A7 9 % of LaTeX version 2005/12/01 or later. '𝞨' '' u1D7A8 10 % '𝞪' '' u1D7AA 11 % This work has the LPPL maintenance status "maintained". '𝞫' '' u1D7AB 12 % '𝞬' '' u1D7AC 13 % The Current Maintainer of this work '𝞭' '' u1D7AD 14 % is the TeX4ht Project . '𝟄' '' u1D7C4 15 % '𝞯' '' u1D7AF 16 % If you modify this program, changing the '𝞰' '' u1D7B0 17 % version identification would be appreciated. '𝞱' '' u1D7B1 18 '𝞲' '' u1D7B2 19 '𝞳' '' u1D7B3 20 '𝞴' '' u1D7B4 21 '𝞵' '' u1D7B5 22 '𝞶' '' u1D7B6 23 '𝞷' '' u1D7B7 24 '𝞹' '' u1D7B9 25 '𝞺' '' u1D7BA 26 '𝞼' '' u1D7BC 27 '𝞽' '' u1D7BD 28 '𝞾' '' u1D7BE 29 '𝟇' '' u1D7C7 30 '𝟀' '' u1D7C0 31 '𝟁' '' u1D7C1 32 '𝟂' '' u1D7C2 33 '𝞮' '' u1D7AE 34 '𝟅' '' u1D7C5 35 '𝟉' '' u1D7C9 36 '𝟈' '' u1D7C8 37 '𝞻' '' u1D7BB 38 '𝞿' '' u1D7BF 39 '𝞩' '' u1D7A9 40 '𝟃' '' u1D7C3 41 '⬲' '' uni2B32 42 '⬳' '' uni2B33 43 '⬴' '' uni2B34 44 '⬵' '' uni2B35 45 '⬶' '' uni2B36 46 '⬷' '' uni2B37 47 '𝟬' '' u1D7EC 48 '𝟭' '' u1D7ED 49 '𝟮' '' u1D7EE 50 '𝟯' '' u1D7EF 51 '𝟰' '' u1D7F0 52 '𝟱' '' u1D7F1 53 '𝟲' '' u1D7F2 54 '𝟳' '' u1D7F3 55 '𝟴' '' u1D7F4 56 '𝟵' '' u1D7F5 57 '⬸' '' uni2B38 58 '⬹' '' uni2B39 59 '⬺' '' uni2B3A 60 '⬻' '' uni2B3B 61 '⬼' '' uni2B3C 62 '⬽' '' uni2B3D 63 '⬾' '' uni2B3E 64 '𝘼' '' u1D63C 65 '𝘽' '' u1D63D 66 '𝘾' '' u1D63E 67 '𝘿' '' u1D63F 68 '𝙀' '' u1D640 69 '𝙁' '' u1D641 70 '𝙂' '' u1D642 71 '𝙃' '' u1D643 72 '𝙄' '' u1D644 73 '𝙅' '' u1D645 74 '𝙆' '' u1D646 75 '𝙇' '' u1D647 76 '𝙈' '' u1D648 77 '𝙉' '' u1D649 78 '𝙊' '' u1D64A 79 '𝙋' '' u1D64B 80 '𝙌' '' u1D64C 81 '𝙍' '' u1D64D 82 '𝙎' '' u1D64E 83 '𝙏' '' u1D64F 84 '𝙐' '' u1D650 85 '𝙑' '' u1D651 86 '𝙒' '' u1D652 87 '𝙓' '' u1D653 88 '𝙔' '' u1D654 89 '𝙕' '' u1D655 90 '⬿' '' uni2B3F 91 '⭀' '' uni2B40 92 '⭁' '' uni2B41 93 '⭂' '' uni2B42 94 '⭃' '' uni2B43 95 '⭄' '' uni2B44 96 '𝙖' '' u1D656 97 '𝙗' '' u1D657 98 '𝙘' '' u1D658 99 '𝙙' '' u1D659 100 '𝙚' '' u1D65A 101 '𝙛' '' u1D65B 102 '𝙜' '' u1D65C 103 '𝙝' '' u1D65D 104 '𝙞' '' u1D65E 105 '𝙟' '' u1D65F 106 '𝙠' '' u1D660 107 '𝙡' '' u1D661 108 '𝙢' '' u1D662 109 '𝙣' '' u1D663 110 '𝙤' '' u1D664 111 '𝙥' '' u1D665 112 '𝙦' '' u1D666 113 '𝙧' '' u1D667 114 '𝙨' '' u1D668 115 '𝙩' '' u1D669 116 '𝙪' '' u1D66A 117 '𝙫' '' u1D66B 118 '𝙬' '' u1D66C 119 '𝙭' '' u1D66D 120 '𝙮' '' u1D66E 121 '𝙯' '' u1D66F 122 '𝙞' '' u1D65E.dtls 123 '𝙟' '' u1D65F.dtls 124 '⭅' '' uni2B45 125 '⭆' '' uni2B46 126 '⁀' '' uni2040 127 '̀' '' uni0300 128 '́' '' uni0301 129 '̂' '' uni0302 130 '̃' '' uni0303 131 '̄' '' uni0304 132 '̆' '' uni0306 133 '̇' '' uni0307 134 '̈' '' uni0308 135 '̉' '' uni0309 136 '̊' '' uni030A 137 '̌' '' uni030C 138 '̐' '' uni0310 139 '̒' '' uni0312 140 '̕' '' uni0315 141 '̚' '' uni031A 142 '⃐' '' uni20D0 143 '⃑' '' uni20D1 144 '⃖' '' uni20D6 145 '⃗' '' uni20D7 146 '⃛' '' uni20DB 147 '⃜' '' uni20DC 148 '⃡' '' uni20E1 149 '⃧' '' uni20E7 150 '⃩' '' uni20E9 151 '⃰' '' uni20F0 152 '⤀' '' uni2900 153 '⤁' '' uni2901 154 '⤂' '' uni2902 155 '⤃' '' uni2903 156 '⤄' '' uni2904 157 '⤅' '' uni2905 158 '⤆' '' uni2906 159 '⤇' '' uni2907 160 '⤈' '' uni2908 161 '⤉' '' uni2909 162 '⬰' '' uni2B30 163 '⬱' '' uni2B31 164 '⤌' '' uni290C 165 '⤍' '' uni290D 166 '⤎' '' uni290E 167 '⤏' '' uni290F 168 '⤐' '' uni2910 169 '⤑' '' uni2911 170 '⤒' '' uni2912 171 '⤓' '' uni2913 172 '⤔' '' uni2914 173 '⤕' '' uni2915 174 '⤖' '' uni2916 175 '⤗' '' uni2917 176 '⤘' '' uni2918 177 '⤙' '' uni2919 178 '⤚' '' uni291A 179 '⤛' '' uni291B 180 '⤜' '' uni291C 181 '⤝' '' uni291D 182 '⤞' '' uni291E 183 '⤟' '' uni291F 184 '⤠' '' uni2920 185 '⤡' '' uni2921 186 '⤢' '' uni2922 187 '⤣' '' uni2923 188 '⤤' '' uni2924 189 '⤥' '' uni2925 190 '⤦' '' uni2926 191 '⤧' '' uni2927 192 '⤨' '' uni2928 193 '⤩' '' uni2929 194 '⤪' '' uni292A 195 '⤫' '' uni292B 196 '⤬' '' uni292C 197 '⤭' '' uni292D 198 '⤮' '' uni292E 199 '⤯' '' uni292F 200 '⤰' '' uni2930 201 '⤱' '' uni2931 202 '⤲' '' uni2932 203 '⤳' '' uni2933 204 '⤴' '' uni2934 205 '⤵' '' uni2935 206 '⤶' '' uni2936 207 '⤷' '' uni2937 208 '⤸' '' uni2938 209 '⤹' '' uni2939 210 '⤺' '' uni293A 211 '⤻' '' uni293B 212 '⤼' '' uni293C 213 '⤽' '' uni293D 214 '⤾' '' uni293E 215 '⤿' '' uni293F 216 '⥀' '' uni2940 217 '⥁' '' uni2941 218 '⥂' '' uni2942 219 '⥃' '' uni2943 220 '⥄' '' uni2944 221 '⥅' '' uni2945 222 '⥆' '' uni2946 223 '⥇' '' uni2947 224 '⥈' '' uni2948 225 '⥉' '' uni2949 226 '⥊' '' uni294A 227 '⥋' '' uni294B 228 '⥌' '' uni294C 229 '⥍' '' uni294D 230 '⥎' '' uni294E 231 '⥏' '' uni294F 232 '⥐' '' uni2950 233 '⥑' '' uni2951 234 '⥒' '' uni2952 235 '⥓' '' uni2953 236 '⥔' '' uni2954 237 '⥕' '' uni2955 238 '⥖' '' uni2956 239 '⥗' '' uni2957 240 '⥘' '' uni2958 241 '⥙' '' uni2959 242 '⥚' '' uni295A 243 '⥛' '' uni295B 244 '⥜' '' uni295C 245 '⥝' '' uni295D 246 '⥞' '' uni295E 247 '⥟' '' uni295F 248 '⥠' '' uni2960 249 '⥡' '' uni2961 250 '⥢' '' uni2962 251 '⥣' '' uni2963 252 '⥤' '' uni2964 253 '⥥' '' uni2965 254 '⥦' '' uni2966 255 stix-mathsfit-bold 0 255 htfcss: stix-mathsfit-bold font-weight: bold; font-style: italic; font-family: 'STIXMathSans', serif;