stix-mathsf-bold 0 255 '𝝘' '' u1D758 0 % generated from stix-mathsf-bold.tfm, 2022-11-15-12:30 '𝝙' '' u1D759 1 % Copyright 2022 TeX Users Group '𝝝' '' u1D75D 2 % '𝝠' '' u1D760 3 % This work may be distributed and/or modified under the '𝝣' '' u1D763 4 % conditions of the LaTeX Project Public License, either '𝝥' '' u1D765 5 % version 1.3c of this license or (at your option) any '𝝨' '' u1D768 6 % later version. The latest version of this license is in '𝝪' '' u1D76A 7 % http://www.latex-project.org/lppl.txt '𝝫' '' u1D76B 8 % and version 1.3c or later is part of all distributions '𝝭' '' u1D76D 9 % of LaTeX version 2005/12/01 or later. '𝝮' '' u1D76E 10 % '𝝰' '' u1D770 11 % This work has the LPPL maintenance status "maintained". '𝝱' '' u1D771 12 % '𝝲' '' u1D772 13 % The Current Maintainer of this work '𝝳' '' u1D773 14 % is the TeX4ht Project . '𝞊' '' u1D78A 15 % '𝝵' '' u1D775 16 % If you modify this program, changing the '𝝶' '' u1D776 17 % version identification would be appreciated. '𝝷' '' u1D777 18 '𝝸' '' u1D778 19 '𝝹' '' u1D779 20 '𝝺' '' u1D77A 21 '𝝻' '' u1D77B 22 '𝝼' '' u1D77C 23 '𝝽' '' u1D77D 24 '𝝿' '' u1D77F 25 '𝞀' '' u1D780 26 '𝞂' '' u1D782 27 '𝞃' '' u1D783 28 '𝞄' '' u1D784 29 '𝞍' '' u1D78D 30 '𝞆' '' u1D786 31 '𝞇' '' u1D787 32 '𝞈' '' u1D788 33 '𝝴' '' u1D774 34 '𝞋' '' u1D78B 35 '𝞏' '' u1D78F 36 '𝞎' '' u1D78E 37 '𝞁' '' u1D781 38 '𝞅' '' u1D785 39 '𝝯' '' u1D76F 40 '𝞉' '' u1D789 41 '' '' uniE0B4 42 '' '' uniE0B5 43 '←' '' uni2190.x 44 '⇐' '' uni21D0.x 45 '⇚' '' uni21DA.x 46 '⭅' '' uni2B45.x 47 '𝟬' '' u1D7EC 48 '𝟭' '' u1D7ED 49 '𝟮' '' u1D7EE 50 '𝟯' '' u1D7EF 51 '𝟰' '' u1D7F0 52 '𝟱' '' u1D7F1 53 '𝟲' '' u1D7F2 54 '𝟳' '' u1D7F3 55 '𝟴' '' u1D7F4 56 '𝟵' '' u1D7F5 57 '' '' mapsfromchar 58 '' '' uniE0B6 59 '⏐' '' uni23D0 60 '⇑' '' uni21D1.x 61 '⤊' '' uni290A.x 62 '⟰' '' uni27F0.x 63 '⭈' '' uni2B48 64 '𝗔' '' u1D5D4 65 '𝗕' '' u1D5D5 66 '𝗖' '' u1D5D6 67 '𝗗' '' u1D5D7 68 '𝗘' '' u1D5D8 69 '𝗙' '' u1D5D9 70 '𝗚' '' u1D5DA 71 '𝗛' '' u1D5DB 72 '𝗜' '' u1D5DC 73 '𝗝' '' u1D5DD 74 '𝗞' '' u1D5DE 75 '𝗟' '' u1D5DF 76 '𝗠' '' u1D5E0 77 '𝗡' '' u1D5E1 78 '𝗢' '' u1D5E2 79 '𝗣' '' u1D5E3 80 '𝗤' '' u1D5E4 81 '𝗥' '' u1D5E5 82 '𝗦' '' u1D5E6 83 '𝗧' '' u1D5E7 84 '𝗨' '' u1D5E8 85 '𝗩' '' u1D5E9 86 '𝗪' '' u1D5EA 87 '𝗫' '' u1D5EB 88 '𝗬' '' u1D5EC 89 '𝗭' '' u1D5ED 90 '⭉' '' uni2B49 91 '⭊' '' uni2B4A 92 '⭋' '' uni2B4B 93 '⭌' '' uni2B4C 94 '⤊' '' uni290A 95 '⤋' '' uni290B 96 '𝗮' '' u1D5EE 97 '𝗯' '' u1D5EF 98 '𝗰' '' u1D5F0 99 '𝗱' '' u1D5F1 100 '𝗲' '' u1D5F2 101 '𝗳' '' u1D5F3 102 '𝗴' '' u1D5F4 103 '𝗵' '' u1D5F5 104 '𝗶' '' u1D5F6 105 '𝗷' '' u1D5F7 106 '𝗸' '' u1D5F8 107 '𝗹' '' u1D5F9 108 '𝗺' '' u1D5FA 109 '𝗻' '' u1D5FB 110 '𝗼' '' u1D5FC 111 '𝗽' '' u1D5FD 112 '𝗾' '' u1D5FE 113 '𝗿' '' u1D5FF 114 '𝘀' '' u1D600 115 '𝘁' '' u1D601 116 '𝘂' '' u1D602 117 '𝘃' '' u1D603 118 '𝘄' '' u1D604 119 '𝘅' '' u1D605 120 '𝘆' '' u1D606 121 '𝘇' '' u1D607 122 '𝗶' '' u1D5F6.dtls 123 '𝗷' '' u1D5F7.dtls 124 '←' '' uni2190 125 '↑' '' uni2191 126 '⁀' '' uni2040 127 '̀' '' uni0300 128 '́' '' uni0301 129 '̂' '' uni0302 130 '̃' '' uni0303 131 '̄' '' uni0304 132 '̆' '' uni0306 133 '̇' '' uni0307 134 '̈' '' uni0308 135 '̉' '' uni0309 136 '̊' '' uni030A 137 '̌' '' uni030C 138 '̐' '' uni0310 139 '̒' '' uni0312 140 '̕' '' uni0315 141 '̚' '' uni031A 142 '⃐' '' uni20D0 143 '⃑' '' uni20D1 144 '⃖' '' uni20D6 145 '⃗' '' uni20D7 146 '⃛' '' uni20DB 147 '⃜' '' uni20DC 148 '⃡' '' uni20E1 149 '⃧' '' uni20E7 150 '⃩' '' uni20E9 151 '⃰' '' uni20F0 152 '→' '' uni2192 153 '↓' '' uni2193 154 '↔' '' uni2194 155 '↕' '' uni2195 156 '↖' '' uni2196 157 '↗' '' uni2197 158 '↘' '' uni2198 159 '↙' '' uni2199 160 '↚' '' uni219A 161 '↛' '' uni219B 162 '↜' '' uni219C 163 '↝' '' uni219D 164 '↞' '' uni219E 165 '↟' '' uni219F 166 '↠' '' uni21A0 167 '↡' '' uni21A1 168 '↢' '' uni21A2 169 '↣' '' uni21A3 170 '↤' '' uni21A4 171 '↥' '' uni21A5 172 '↦' '' uni21A6 173 '↧' '' uni21A7 174 '↨' '' uni21A8 175 '↩' '' uni21A9 176 '↪' '' uni21AA 177 '↫' '' uni21AB 178 '↬' '' uni21AC 179 '↭' '' uni21AD 180 '↮' '' uni21AE 181 '↯' '' uni21AF 182 '↰' '' uni21B0 183 '↱' '' uni21B1 184 '↲' '' uni21B2 185 '↳' '' uni21B3 186 '↴' '' uni21B4 187 '↵' '' uni21B5 188 '↶' '' uni21B6 189 '↷' '' uni21B7 190 '↸' '' uni21B8 191 '↹' '' uni21B9 192 '↺' '' uni21BA 193 '↻' '' uni21BB 194 '↼' '' uni21BC 195 '↽' '' uni21BD 196 '↾' '' uni21BE 197 '↿' '' uni21BF 198 '⇀' '' uni21C0 199 '⇁' '' uni21C1 200 '⇂' '' uni21C2 201 '⇃' '' uni21C3 202 '⇄' '' uni21C4 203 '⇅' '' uni21C5 204 '⇆' '' uni21C6 205 '⇇' '' uni21C7 206 '⇈' '' uni21C8 207 '⇉' '' uni21C9 208 '⇊' '' uni21CA 209 '⇋' '' uni21CB 210 '⇌' '' uni21CC 211 '⇍' '' uni21CD 212 '⇎' '' uni21CE 213 '⇏' '' uni21CF 214 '⇐' '' uni21D0 215 '⇑' '' uni21D1 216 '⇒' '' uni21D2 217 '⇓' '' uni21D3 218 '⇔' '' uni21D4 219 '⇕' '' uni21D5 220 '⇖' '' uni21D6 221 '⇗' '' uni21D7 222 '⇘' '' uni21D8 223 '⇙' '' uni21D9 224 '⇚' '' uni21DA 225 '⇛' '' uni21DB 226 '⇜' '' uni21DC 227 '⇝' '' uni21DD 228 '⇞' '' uni21DE 229 '⇟' '' uni21DF 230 '⇠' '' uni21E0 231 '⇡' '' uni21E1 232 '⇢' '' uni21E2 233 '⇣' '' uni21E3 234 '⇤' '' uni21E4 235 '⇥' '' uni21E5 236 '⇦' '' uni21E6 237 '⇧' '' uni21E7 238 '⇨' '' uni21E8 239 '⇩' '' uni21E9 240 '⇪' '' uni21EA 241 '⇴' '' uni21F4 242 '⇵' '' uni21F5 243 '⇶' '' uni21F6 244 '⇷' '' uni21F7 245 '⇸' '' uni21F8 246 '⇹' '' uni21F9 247 '⇺' '' uni21FA 248 '⇻' '' uni21FB 249 '⇼' '' uni21FC 250 '⇽' '' uni21FD 251 '⇾' '' uni21FE 252 '⇿' '' uni21FF 253 '⟰' '' uni27F0 254 '⟱' '' uni27F1 255 stix-mathsf-bold 0 255 htfcss: stix-mathsf-bold font-weight: bold; font-family: 'STIXMathSans', serif;