stix-mathscr-bold 0 255 '⊵' '' uni22B5 0 % generated from stix-mathscr-bold.tfm, 2022-11-15-12:30 '⊶' '' uni22B6 1 % Copyright 2022 TeX Users Group '⊷' '' uni22B7 2 % '⊸' '' uni22B8 3 % This work may be distributed and/or modified under the '⊹' '' uni22B9 4 % conditions of the LaTeX Project Public License, either '⊺' '' uni22BA 5 % version 1.3c of this license or (at your option) any '⊻' '' uni22BB 6 % later version. The latest version of this license is in '⊼' '' uni22BC 7 % http://www.latex-project.org/lppl.txt '⊽' '' uni22BD 8 % and version 1.3c or later is part of all distributions '⊾' '' uni22BE 9 % of LaTeX version 2005/12/01 or later. '⊿' '' uni22BF 10 % '⋄' '' uni22C4 11 % This work has the LPPL maintenance status "maintained". '⋅' '' uni22C5 12 % '⋇' '' uni22C7 13 % The Current Maintainer of this work '⋈' '' uni22C8 14 % is the TeX4ht Project . '⋉' '' uni22C9 15 % '⋊' '' uni22CA 16 % If you modify this program, changing the '⋋' '' uni22CB 17 % version identification would be appreciated. '⋌' '' uni22CC 18 '⋍' '' uni22CD 19 '⋎' '' uni22CE 20 '⋏' '' uni22CF 21 '⋐' '' uni22D0 22 '⋑' '' uni22D1 23 '⋒' '' uni22D2 24 '⋓' '' uni22D3 25 '⋔' '' uni22D4 26 '⋕' '' uni22D5 27 '⋖' '' uni22D6 28 '⋗' '' uni22D7 29 '⋘' '' uni22D8 30 '⋙' '' uni22D9 31 '⋚' '' uni22DA 32 '⋛' '' uni22DB 33 '⋜' '' uni22DC 34 '⋝' '' uni22DD 35 '⋞' '' uni22DE 36 '⋟' '' uni22DF 37 '⋠' '' uni22E0 38 '⋡' '' uni22E1 39 '⋢' '' uni22E2 40 '⋣' '' uni22E3 41 '⋤' '' uni22E4 42 '⋥' '' uni22E5 43 '⋦' '' uni22E6 44 '⋧' '' uni22E7 45 '⋨' '' uni22E8 46 '⋩' '' uni22E9 47 '⋪' '' uni22EA 48 '⋫' '' uni22EB 49 '⋬' '' uni22EC 50 '⋭' '' uni22ED 51 '⋮' '' uni22EE 52 '⋯' '' uni22EF 53 '⋰' '' uni22F0 54 '⋱' '' uni22F1 55 '⋲' '' uni22F2 56 '⋳' '' uni22F3 57 '⋴' '' uni22F4 58 '⋵' '' uni22F5 59 '⋶' '' uni22F6 60 '⋷' '' uni22F7 61 '⋸' '' uni22F8 62 '⋹' '' uni22F9 63 '⋺' '' uni22FA 64 '𝓐' '' u1D4D0 65 '𝓑' '' u1D4D1 66 '𝓒' '' u1D4D2 67 '𝓓' '' u1D4D3 68 '𝓔' '' u1D4D4 69 '𝓕' '' u1D4D5 70 '𝓖' '' u1D4D6 71 '𝓗' '' u1D4D7 72 '𝓘' '' u1D4D8 73 '𝓙' '' u1D4D9 74 '𝓚' '' u1D4DA 75 '𝓛' '' u1D4DB 76 '𝓜' '' u1D4DC 77 '𝓝' '' u1D4DD 78 '𝓞' '' u1D4DE 79 '𝓟' '' u1D4DF 80 '𝓠' '' u1D4E0 81 '𝓡' '' u1D4E1 82 '𝓢' '' u1D4E2 83 '𝓣' '' u1D4E3 84 '𝓤' '' u1D4E4 85 '𝓥' '' u1D4E5 86 '𝓦' '' u1D4E6 87 '𝓧' '' u1D4E7 88 '𝓨' '' u1D4E8 89 '𝓩' '' u1D4E9 90 '⋻' '' uni22FB 91 '⋼' '' uni22FC 92 '⋽' '' uni22FD 93 '⋾' '' uni22FE 94 '⋿' '' uni22FF 95 '⌀' '' uni2300 96 '𝓪' '' u1D4EA 97 '𝓫' '' u1D4EB 98 '𝓬' '' u1D4EC 99 '𝓭' '' u1D4ED 100 '𝓮' '' u1D4EE 101 '𝓯' '' u1D4EF 102 '𝓰' '' u1D4F0 103 '𝓱' '' u1D4F1 104 '𝓲' '' u1D4F2 105 '𝓳' '' u1D4F3 106 '𝓴' '' u1D4F4 107 '𝓵' '' u1D4F5 108 '𝓶' '' u1D4F6 109 '𝓷' '' u1D4F7 110 '𝓸' '' u1D4F8 111 '𝓹' '' u1D4F9 112 '𝓺' '' u1D4FA 113 '𝓻' '' u1D4FB 114 '𝓼' '' u1D4FC 115 '𝓽' '' u1D4FD 116 '𝓾' '' u1D4FE 117 '𝓿' '' u1D4FF 118 '𝔀' '' u1D500 119 '𝔁' '' u1D501 120 '𝔂' '' u1D502 121 '𝔃' '' u1D503 122 '𝓲' '' u1D4F2.dtls 123 '𝓳' '' u1D4F3.dtls 124 '℘' '' uni2118 125 '⌂' '' uni2302 126 '⁀' '' uni2040 127 '̀' '' uni0300 128 '́' '' uni0301 129 '̂' '' uni0302 130 '̃' '' uni0303 131 '̄' '' uni0304 132 '̆' '' uni0306 133 '̇' '' uni0307 134 '̈' '' uni0308 135 '̉' '' uni0309 136 '̊' '' uni030A 137 '̌' '' uni030C 138 '̐' '' uni0310 139 '̒' '' uni0312 140 '̕' '' uni0315 141 '̚' '' uni031A 142 '⃐' '' uni20D0 143 '⃑' '' uni20D1 144 '⃖' '' uni20D6 145 '⃗' '' uni20D7 146 '⃛' '' uni20DB 147 '⃜' '' uni20DC 148 '⃡' '' uni20E1 149 '⃧' '' uni20E7 150 '⃩' '' uni20E9 151 '⃰' '' uni20F0 152 '⌅' '' uni2305 153 '⌆' '' uni2306 154 '⌐' '' uni2310 155 '⌑' '' uni2311 156 '⌒' '' uni2312 157 '⌓' '' uni2313 158 '⌗' '' uni2317 159 '⌙' '' uni2319 160 '⌜' '' uni231C 161 '⌝' '' uni231D 162 '⌞' '' uni231E 163 '⌟' '' uni231F 164 '⌬' '' uni232C 165 '⌲' '' uni2332 166 '⌶' '' uni2336 167 '⌽' '' uni233D 168 '⌿' '' uni233F 169 '⍀' '' uni2340 170 '⍓' '' uni2353 171 '⍰' '' uni2370 172 '⍼' '' uni237C 173 '⎔' '' uni2394 174 '⏎' '' uni23CE 175 '⏢' '' uni23E2 176 '⏣' '' uni23E3 177 '⏤' '' uni23E4 178 '⏥' '' uni23E5 179 '⏦' '' uni23E6 180 '⏧' '' uni23E7 181 '␣' '' uni2423 182 '■' '' uni25A0 183 '□' '' uni25A1 184 '▢' '' uni25A2 185 '▣' '' uni25A3 186 '▤' '' uni25A4 187 '▥' '' uni25A5 188 '▦' '' uni25A6 189 '▧' '' uni25A7 190 '▨' '' uni25A8 191 '▩' '' uni25A9 192 '▪' '' uni25AA 193 '▫' '' uni25AB 194 '▬' '' uni25AC 195 '▭' '' uni25AD 196 '▮' '' uni25AE 197 '▯' '' uni25AF 198 '▰' '' uni25B0 199 '▱' '' uni25B1 200 '▲' '' uni25B2 201 '△' '' uni25B3 202 '▴' '' uni25B4 203 '▵' '' uni25B5 204 '▶' '' uni25B6 205 '⊳' '' uni22B3 206 '▸' '' uni25B8 207 '▹' '' uni25B9 208 '►' '' uni25BA 209 '▻' '' uni25BB 210 '▼' '' uni25BC 211 '▽' '' uni25BD 212 '▾' '' uni25BE 213 '▿' '' uni25BF 214 '◀' '' uni25C0 215 '⊲' '' uni22B2 216 '◂' '' uni25C2 217 '◃' '' uni25C3 218 '◄' '' uni25C4 219 '◅' '' uni25C5 220 '◆' '' uni25C6 221 '◇' '' uni25C7 222 '◈' '' uni25C8 223 '◉' '' uni25C9 224 '◊' '' uni25CA 225 '○' '' uni25CB 226 '◌' '' uni25CC 227 '◍' '' uni25CD 228 '◎' '' uni25CE 229 '●' '' uni25CF 230 '◐' '' uni25D0 231 '◑' '' uni25D1 232 '◒' '' uni25D2 233 '◓' '' uni25D3 234 '◔' '' uni25D4 235 '◕' '' uni25D5 236 '◖' '' uni25D6 237 '◗' '' uni25D7 238 '◘' '' uni25D8 239 '◙' '' uni25D9 240 '◚' '' uni25DA 241 '◛' '' uni25DB 242 '◜' '' uni25DC 243 '◝' '' uni25DD 244 '◞' '' uni25DE 245 '◟' '' uni25DF 246 '◠' '' uni25E0 247 '◡' '' uni25E1 248 '◢' '' uni25E2 249 '◣' '' uni25E3 250 '◤' '' uni25E4 251 '◥' '' uni25E5 252 '◦' '' uni25E6 253 '◧' '' uni25E7 254 '◨' '' uni25E8 255 stix-mathscr-bold 0 255 htfcss: stix-mathscr-bold font-weight: bold; font-variant: small-caps; font-family: 'STIXMathScript', serif;