stix-mathit-bold 0 255 '𝜞' '' u1D71E 0 % generated from stix-mathit-bold.tfm, 2022-11-15-12:30 '𝜟' '' u1D71F 1 % Copyright 2022 TeX Users Group '𝜣' '' u1D723 2 % '𝜦' '' u1D726 3 % This work may be distributed and/or modified under the '𝜩' '' u1D729 4 % conditions of the LaTeX Project Public License, either '𝜫' '' u1D72B 5 % version 1.3c of this license or (at your option) any '𝜮' '' u1D72E 6 % later version. The latest version of this license is in '𝜰' '' u1D730 7 % http://www.latex-project.org/lppl.txt '𝜱' '' u1D731 8 % and version 1.3c or later is part of all distributions '𝜳' '' u1D733 9 % of LaTeX version 2005/12/01 or later. '𝜴' '' u1D734 10 % '𝜶' '' u1D736 11 % This work has the LPPL maintenance status "maintained". '𝜷' '' u1D737 12 % '𝜸' '' u1D738 13 % The Current Maintainer of this work '𝜹' '' u1D739 14 % is the TeX4ht Project . '𝝐' '' u1D750 15 % '𝜻' '' u1D73B 16 % If you modify this program, changing the '𝜼' '' u1D73C 17 % version identification would be appreciated. '𝜽' '' u1D73D 18 '𝜾' '' u1D73E 19 '𝜿' '' u1D73F 20 '𝝀' '' u1D740 21 '𝝁' '' u1D741 22 '𝝂' '' u1D742 23 '𝝃' '' u1D743 24 '𝝅' '' u1D745 25 '𝝆' '' u1D746 26 '𝝈' '' u1D748 27 '𝝉' '' u1D749 28 '𝝊' '' u1D74A 29 '𝝓' '' u1D753 30 '𝝌' '' u1D74C 31 '𝝍' '' u1D74D 32 '𝝎' '' u1D74E 33 '𝜺' '' u1D73A 34 '𝝑' '' u1D751 35 '𝝕' '' u1D755 36 '𝝔' '' u1D754 37 '𝝇' '' u1D747 38 '𝝋' '' u1D74B 39 '𝜵' '' u1D735 40 '𝝏' '' u1D74F 41 'ℵ' '' uni2135 42 'ℶ' '' uni2136 43 'ℷ' '' uni2137 44 'ℸ' '' uni2138 45 '⊳' '' uni22B3 46 '⊲' '' uni22B2 47 '𝟎' '' u1D7CE 48 '𝟏' '' u1D7CF 49 '𝟐' '' u1D7D0 50 '𝟑' '' u1D7D1 51 '𝟒' '' u1D7D2 52 '𝟓' '' u1D7D3 53 '𝟔' '' u1D7D4 54 '𝟕' '' u1D7D5 55 '𝟖' '' u1D7D6 56 '𝟗' '' u1D7D7 57 '.' '' period 58 ',' '' comma 59 '<' '' less 60 'ℏ' '' uni210F 61 '>' '' greater 62 '⋆' '' uni22C6 63 '≨' '' uni2268 64 '𝑨' '' u1D468 65 '𝑩' '' u1D469 66 '𝑪' '' u1D46A 67 '𝑫' '' u1D46B 68 '𝑬' '' u1D46C 69 '𝑭' '' u1D46D 70 '𝑮' '' u1D46E 71 '𝑯' '' u1D46F 72 '𝑰' '' u1D470 73 '𝑱' '' u1D471 74 '𝑲' '' u1D472 75 '𝑳' '' u1D473 76 '𝑴' '' u1D474 77 '𝑵' '' u1D475 78 '𝑶' '' u1D476 79 '𝑷' '' u1D477 80 '𝑸' '' u1D478 81 '𝑹' '' u1D479 82 '𝑺' '' u1D47A 83 '𝑻' '' u1D47B 84 '𝑼' '' u1D47C 85 '𝑽' '' u1D47D 86 '𝑾' '' u1D47E 87 '𝑿' '' u1D47F 88 '𝒀' '' u1D480 89 '𝒁' '' u1D481 90 '♭' '' uni266D 91 '♮' '' uni266E 92 '♯' '' uni266F 93 '⌣' '' uni2323 94 '⌢' '' uni2322 95 'ℏ' '' uni210F.var 96 '𝒂' '' u1D482 97 '𝒃' '' u1D483 98 '𝒄' '' u1D484 99 '𝒅' '' u1D485 100 '𝒆' '' u1D486 101 '𝒇' '' u1D487 102 '𝒈' '' u1D488 103 '𝒉' '' u1D489 104 '𝒊' '' u1D48A 105 '𝒋' '' u1D48B 106 '𝒌' '' u1D48C 107 '𝒍' '' u1D48D 108 '𝒎' '' u1D48E 109 '𝒏' '' u1D48F 110 '𝒐' '' u1D490 111 '𝒑' '' u1D491 112 '𝒒' '' u1D492 113 '𝒓' '' u1D493 114 '𝒔' '' u1D494 115 '𝒕' '' u1D495 116 '𝒖' '' u1D496 117 '𝒗' '' u1D497 118 '𝒘' '' u1D498 119 '𝒙' '' u1D499 120 '𝒚' '' u1D49A 121 '𝒛' '' u1D49B 122 '𝒊' '' u1D48A.dtls 123 '𝒋' '' u1D48B.dtls 124 '≩' '' uni2269 125 '≪' '' uni226A 126 '⁀' '' uni2040 127 '̀' '' uni0300 128 '́' '' uni0301 129 '̂' '' uni0302 130 '̃' '' uni0303 131 '̄' '' uni0304 132 '̆' '' uni0306 133 '̇' '' uni0307 134 '̈' '' uni0308 135 '̉' '' uni0309 136 '̊' '' uni030A 137 '̌' '' uni030C 138 '̐' '' uni0310 139 '̒' '' uni0312 140 '̕' '' uni0315 141 '̚' '' uni031A 142 '⃐' '' uni20D0 143 '⃑' '' uni20D1 144 '⃖' '' uni20D6 145 '⃗' '' uni20D7 146 '⃛' '' uni20DB 147 '⃜' '' uni20DC 148 '⃡' '' uni20E1 149 '⃧' '' uni20E7 150 '⃩' '' uni20E9 151 '⃰' '' uni20F0 152 '⃖' '' uni20D6.x 153 '̂' '' uni0302.s1 154 '̃' '' uni0303.s1 155 '̌' '' uni030C.s1 156 '̂' '' uni0302.s2 157 '̃' '' uni0303.s2 158 '̌' '' uni030C.s2 159 '̂' '' uni0302.s3 160 '̃' '' uni0303.s3 161 '̌' '' uni030C.s3 162 '̂' '' uni0302.s4 163 '̃' '' uni0303.s4 164 '̌' '' uni030C.s4 165 '̂' '' uni0302.s5 166 '̃' '' uni0303.s5 167 '̌' '' uni030C.s5 168 '⏞' '' uni23DE.l 169 '⏞' '' uni23DE.r 170 '⏟' '' uni23DF.l 171 '⏟' '' uni23DF.r 172 '⏞' '' uni23DE.x 173 '⏞' '' uni23DE.m 174 '⏟' '' uni23DF.m 175 '⏜' '' uni23DC.l 176 '⏜' '' uni23DC.r 177 '⏝' '' uni23DD.l 178 '⏝' '' uni23DD.r 179 '⎴' '' uni23B4.l 180 '⎴' '' uni23B4.r 181 '⎵' '' uni23B5.l 182 '⎵' '' uni23B5.r 183 '≫' '' uni226B 184 '≬' '' uni226C 185 '≭' '' uni226D 186 '≮' '' uni226E 187 '≯' '' uni226F 188 '≰' '' uni2270 189 '≱' '' uni2271 190 '≲' '' uni2272 191 '≳' '' uni2273 192 '≴' '' uni2274 193 '≵' '' uni2275 194 '≶' '' uni2276 195 '≷' '' uni2277 196 '≸' '' uni2278 197 '≹' '' uni2279 198 '≺' '' uni227A 199 '≻' '' uni227B 200 '≼' '' uni227C 201 '≽' '' uni227D 202 '≾' '' uni227E 203 '≿' '' uni227F 204 '⊀' '' uni2280 205 '⊁' '' uni2281 206 '⊂' '' uni2282 207 '⊃' '' uni2283 208 '⊄' '' uni2284 209 '⊅' '' uni2285 210 '⊆' '' uni2286 211 '⊇' '' uni2287 212 '⊈' '' uni2288 213 '⊉' '' uni2289 214 '⊊' '' uni228A 215 '⊋' '' uni228B 216 '⊌' '' uni228C 217 '⊍' '' uni228D 218 '⊎' '' uni228E 219 '⊏' '' uni228F 220 '⊐' '' uni2290 221 '⊑' '' uni2291 222 '⊒' '' uni2292 223 '⊓' '' uni2293 224 '⊔' '' uni2294 225 '⊕' '' uni2295 226 '⊖' '' uni2296 227 '⊗' '' uni2297 228 '⊘' '' uni2298 229 '⊙' '' uni2299 230 '⊚' '' uni229A 231 '⊛' '' uni229B 232 '⊜' '' uni229C 233 '⊝' '' uni229D 234 '⊞' '' uni229E 235 '⊟' '' uni229F 236 '⊠' '' uni22A0 237 '⊡' '' uni22A1 238 '⊢' '' uni22A2 239 '⊣' '' uni22A3 240 '⊤' '' uni22A4 241 '⊥' '' uni22A5 242 '⊦' '' uni22A6 243 '⊧' '' uni22A7 244 '⊨' '' uni22A8 245 '⊩' '' uni22A9 246 '⊪' '' uni22AA 247 '⊫' '' uni22AB 248 '⊬' '' uni22AC 249 '⊭' '' uni22AD 250 '⊮' '' uni22AE 251 '⊯' '' uni22AF 252 '⊰' '' uni22B0 253 '⊱' '' uni22B1 254 '⊴' '' uni22B4 255 stix-mathit-bold 0 255 htfcss: stix-mathit-bold font-weight: bold; font-style: italic; font-family: 'STIXMath', serif;