stix-mathcal-bold 0 255 '∫' '' uni222B.sm 0 % generated from stix-mathcal-bold.tfm, 2022-11-15-12:30 '∬' '' uni222C.sm 1 % Copyright 2022 TeX Users Group '∭' '' uni222D.sm 2 % '∮' '' uni222E.sm 3 % This work may be distributed and/or modified under the '∯' '' uni222F.sm 4 % conditions of the LaTeX Project Public License, either '∰' '' uni2230.sm 5 % version 1.3c of this license or (at your option) any '∱' '' uni2231.sm 6 % later version. The latest version of this license is in '∲' '' uni2232.sm 7 % http://www.latex-project.org/lppl.txt '∳' '' uni2233.sm 8 % and version 1.3c or later is part of all distributions '⨋' '' uni2A0B.sm 9 % of LaTeX version 2005/12/01 or later. '⨌' '' uni2A0C.sm 10 % '⨍' '' uni2A0D.sm 11 % This work has the LPPL maintenance status "maintained". '⨎' '' uni2A0E.sm 12 % '⨏' '' uni2A0F.sm 13 % The Current Maintainer of this work '⨐' '' uni2A10.sm 14 % is the TeX4ht Project . '⨑' '' uni2A11.sm 15 % '⨒' '' uni2A12.sm 16 % If you modify this program, changing the '⨓' '' uni2A13.sm 17 % version identification would be appreciated. '⨔' '' uni2A14.sm 18 '⨕' '' uni2A15.sm 19 '⨖' '' uni2A16.sm 20 '⨗' '' uni2A17.sm 21 '⨘' '' uni2A18.sm 22 '⨙' '' uni2A19.sm 23 '⨚' '' uni2A1A.sm 24 '⨛' '' uni2A1B.sm 25 '⨜' '' uni2A1C.sm 26 '∫' '' uni222B.upsm 27 '∬' '' uni222C.upsm 28 '∭' '' uni222D.upsm 29 '∮' '' uni222E.upsm 30 '∯' '' uni222F.upsm 31 '∰' '' uni2230.upsm 32 '∱' '' uni2231.upsm 33 '∲' '' uni2232.upsm 34 '∳' '' uni2233.upsm 35 '⨋' '' uni2A0B.upsm 36 '⨌' '' uni2A0C.upsm 37 '⨍' '' uni2A0D.upsm 38 '⨎' '' uni2A0E.upsm 39 '⨏' '' uni2A0F.upsm 40 '⨐' '' uni2A10.upsm 41 '⨑' '' uni2A11.upsm 42 '⨒' '' uni2A12.upsm 43 '⨓' '' uni2A13.upsm 44 '⨔' '' uni2A14.upsm 45 '⨕' '' uni2A15.upsm 46 '⨖' '' uni2A16.upsm 47 '⨗' '' uni2A17.upsm 48 '⨘' '' uni2A18.upsm 49 '⨙' '' uni2A19.upsm 50 '⨚' '' uni2A1A.upsm 51 '⨛' '' uni2A1B.upsm 52 '⨜' '' uni2A1C.upsm 53 '' '' '' '' '' '' '' '' 'Ⓡ' '' uni24C7 58 'Ⓢ' '' uni24C8 59 '⟍' '' uni27CD 60 '⟋' '' uni27CB 61 'ð' '' eth 62 '⌢' '' uni2322.var 63 '⌣' '' uni2323.var 64 '' '' uniE247 65 '' '' uniE248 66 '' '' uniE249 67 '' '' uniE24A 68 '' '' uniE24B 69 '' '' uniE24C 70 '' '' uniE24D 71 '' '' uniE24E 72 '' '' uniE24F 73 '' '' uniE250 74 '' '' uniE251 75 '' '' uniE252 76 '' '' uniE253 77 '' '' uniE254 78 '' '' uniE255 79 '' '' uniE256 80 '' '' uniE257 81 '' '' uniE258 82 '' '' uniE259 83 '' '' uniE25A 84 '' '' uniE25B 85 '' '' uniE25C 86 '' '' uniE25D 87 '' '' uniE25E 88 '' '' uniE25F 89 '' '' uniE260 90 '≩' '' uni2269.var 91 '≨' '' uni2268.var 92 '∤' '' uni2224.var 93 '∦' '' uni2226.var 94 '∣' '' uni2223.var 95 '∥' '' uni2225.var 96 '⊊' '' uni228A.var 97 '⊋' '' uni228B.var 98 '⫋' '' uni2ACB.var 99 '⫌' '' uni2ACC.var 100 '≣' '' uni2263 101 '≤' '' uni2264 102 '≥' '' uni2265 103 '≦' '' uni2266 104 '≧' '' uni2267 105 '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '𝝒' '' u1D752.ital 122 'ϝ' '' uni03DD.ital 123 '϶' '' uni03F6.ital 124 '¥' '' yen 125 '∝' '' uni221D.var 126 '⁀' '' uni2040 127 '≏' '' uni224F 128 '≐' '' uni2250 129 '≑' '' uni2251 130 '≒' '' uni2252 131 '≓' '' uni2253 132 '≔' '' uni2254 133 '≕' '' uni2255 134 '≖' '' uni2256 135 '≗' '' uni2257 136 '≘' '' uni2258 137 '≙' '' uni2259 138 '≚' '' uni225A 139 '≛' '' uni225B 140 '≜' '' uni225C 141 '≝' '' uni225D 142 '≞' '' uni225E 143 '≟' '' uni225F 144 '≠' '' uni2260 145 '≡' '' uni2261 146 '≢' '' uni2262 147 '∫' '' uni222B 148 '∬' '' uni222C 149 '∭' '' uni222D 150 '∮' '' uni222E 151 '∯' '' uni222F 152 '∰' '' uni2230 153 '∱' '' uni2231 154 '∲' '' uni2232 155 '∳' '' uni2233 156 '⨋' '' uni2A0B 157 '⨌' '' uni2A0C 158 '⨍' '' uni2A0D 159 '⨎' '' uni2A0E 160 '⨏' '' uni2A0F 161 '⨐' '' uni2A10 162 '⨑' '' uni2A11 163 '⨒' '' uni2A12 164 '⨓' '' uni2A13 165 '⨔' '' uni2A14 166 '⨕' '' uni2A15 167 '⨖' '' uni2A16 168 '⨗' '' uni2A17 169 '⨘' '' uni2A18 170 '⨙' '' uni2A19 171 '⨚' '' uni2A1A 172 '⨛' '' uni2A1B 173 '⨜' '' uni2A1C 174 '∫' '' uni222B.up 175 '∬' '' uni222C.up 176 '∭' '' uni222D.up 177 '∮' '' uni222E.up 178 '∯' '' uni222F.up 179 '∰' '' uni2230.up 180 '∱' '' uni2231.up 181 '∲' '' uni2232.up 182 '∳' '' uni2233.up 183 '⨋' '' uni2A0B.up 184 '⨌' '' uni2A0C.up 185 '⨍' '' uni2A0D.up 186 '⨎' '' uni2A0E.up 187 '⨏' '' uni2A0F.up 188 '⨐' '' uni2A10.up 189 '⨑' '' uni2A11.up 190 '⨒' '' uni2A12.up 191 '⨓' '' uni2A13.up 192 '⨔' '' uni2A14.up 193 '⨕' '' uni2A15.up 194 '⨖' '' uni2A16.up 195 '⨗' '' uni2A17.up 196 '⨘' '' uni2A18.up 197 '⨙' '' uni2A19.up 198 '⨚' '' uni2A1A.up 199 '⨛' '' uni2A1B.up 200 '⨜' '' uni2A1C.up 201 '∫︁' '' uni222B.dsp 202 '∬' '' uni222C.dsp 203 '∭' '' uni222D.dsp 204 '∮' '' uni222E.dsp 205 '∯' '' uni222F.dsp 206 '∰' '' uni2230.dsp 207 '∱' '' uni2231.dsp 208 '∲' '' uni2232.dsp 209 '∳' '' uni2233.dsp 210 '⨋' '' uni2A0B.dsp 211 '⨌' '' uni2A0C.dsp 212 '⨍' '' uni2A0D.dsp 213 '⨎' '' uni2A0E.dsp 214 '⨏' '' uni2A0F.dsp 215 '⨐' '' uni2A10.dsp 216 '⨑' '' uni2A11.dsp 217 '⨒' '' uni2A12.dsp 218 '⨓' '' uni2A13.dsp 219 '⨔' '' uni2A14.dsp 220 '⨕' '' uni2A15.dsp 221 '⨖' '' uni2A16.dsp 222 '⨗' '' uni2A17.dsp 223 '⨘' '' uni2A18.dsp 224 '⨙' '' uni2A19.dsp 225 '⨚' '' uni2A1A.dsp 226 '⨛' '' uni2A1B.dsp 227 '⨜' '' uni2A1C.dsp 228 '∫' '' uni222B.updsp 229 '∬' '' uni222C.updsp 230 '∭' '' uni222D.updsp 231 '∮' '' uni222E.updsp 232 '∯' '' uni222F.updsp 233 '∰' '' uni2230.updsp 234 '∱' '' uni2231.updsp 235 '∲' '' uni2232.updsp 236 '∳' '' uni2233.updsp 237 '⨋' '' uni2A0B.updsp 238 '⨌' '' uni2A0C.updsp 239 '⨍' '' uni2A0D.updsp 240 '⨎' '' uni2A0E.updsp 241 '⨏' '' uni2A0F.updsp 242 '⨐' '' uni2A10.updsp 243 '⨑' '' uni2A11.updsp 244 '⨒' '' uni2A12.updsp 245 '⨓' '' uni2A13.updsp 246 '⨔' '' uni2A14.updsp 247 '⨕' '' uni2A15.updsp 248 '⨖' '' uni2A16.updsp 249 '⨗' '' uni2A17.updsp 250 '⨘' '' uni2A18.updsp 251 '⨙' '' uni2A19.updsp 252 '⨚' '' uni2A1A.updsp 253 '⨛' '' uni2A1B.updsp 254 '⨜' '' uni2A1C.updsp 255 stix-mathcal-bold 0 255 htfcss: stix-mathcal-bold font-weight: bold; font-family: 'STIXMathCalligraphy', serif;