stix-mathbb 0 255 'ℾ' '' uni213E 0 % generated from stix-mathbb.tfm, 2022-11-15-12:30 '' '' % Copyright 2022 TeX Users Group '' '' % '' '' % This work may be distributed and/or modified under the '' '' % conditions of the LaTeX Project Public License, either 'ℿ' '' uni213F 5 % version 1.3c of this license or (at your option) any '' '' % later version. The latest version of this license is in '' '' % http://www.latex-project.org/lppl.txt '' '' % and version 1.3c or later is part of all distributions '' '' % of LaTeX version 2005/12/01 or later. '' '' % '' '' % This work has the LPPL maintenance status "maintained". '' '' % 'ℽ' '' uni213D 13 % The Current Maintainer of this work '' '' % is the TeX4ht Project . '' '' % '' '' % If you modify this program, changing the '' '' % version identification would be appreciated. '' '' '' '' '' '' '' '' '' '' '' '' '' '' 'ℼ' '' uni213C 25 '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '⪲' '' uni2AB2 38 '⪳' '' uni2AB3 39 '⪴' '' uni2AB4 40 '⪵' '' uni2AB5 41 '⪶' '' uni2AB6 42 '⪷' '' uni2AB7 43 '⪸' '' uni2AB8 44 '⪹' '' uni2AB9 45 '⪺' '' uni2ABA 46 '⪻' '' uni2ABB 47 '𝟘' '' u1D7D8 48 '𝟙' '' u1D7D9 49 '𝟚' '' u1D7DA 50 '𝟛' '' u1D7DB 51 '𝟜' '' u1D7DC 52 '𝟝' '' u1D7DD 53 '𝟞' '' u1D7DE 54 '𝟟' '' u1D7DF 55 '𝟠' '' u1D7E0 56 '𝟡' '' u1D7E1 57 '⪼' '' uni2ABC 58 '⪽' '' uni2ABD 59 '⪾' '' uni2ABE 60 '⪿' '' uni2ABF 61 '⫀' '' uni2AC0 62 '⫁' '' uni2AC1 63 '⫂' '' uni2AC2 64 '𝔸' '' u1D538 65 '𝔹' '' u1D539 66 'ℂ' '' uni2102 67 '𝔻' '' u1D53B 68 '𝔼' '' u1D53C 69 '𝔽' '' u1D53D 70 '𝔾' '' u1D53E 71 'ℍ' '' uni210D 72 '𝕀' '' u1D540 73 '𝕁' '' u1D541 74 '𝕂' '' u1D542 75 '𝕃' '' u1D543 76 '𝕄' '' u1D544 77 'ℕ' '' uni2115 78 '𝕆' '' u1D546 79 'ℙ' '' uni2119 80 'ℚ' '' uni211A 81 'ℝ' '' uni211D 82 '𝕊' '' u1D54A 83 '𝕋' '' u1D54B 84 '𝕌' '' u1D54C 85 '𝕍' '' u1D54D 86 '𝕎' '' u1D54E 87 '𝕏' '' u1D54F 88 '𝕐' '' u1D550 89 'ℤ' '' uni2124 90 '⫃' '' uni2AC3 91 '⫄' '' uni2AC4 92 '⫅' '' uni2AC5 93 '⫆' '' uni2AC6 94 '⫇' '' uni2AC7 95 '⫈' '' uni2AC8 96 '𝕒' '' u1D552 97 '𝕓' '' u1D553 98 '𝕔' '' u1D554 99 '𝕕' '' u1D555 100 '𝕖' '' u1D556 101 '𝕗' '' u1D557 102 '𝕘' '' u1D558 103 '𝕙' '' u1D559 104 '𝕚' '' u1D55A 105 '𝕛' '' u1D55B 106 '𝕜' '' u1D55C 107 '𝕝' '' u1D55D 108 '𝕞' '' u1D55E 109 '𝕟' '' u1D55F 110 '𝕠' '' u1D560 111 '𝕡' '' u1D561 112 '𝕢' '' u1D562 113 '𝕣' '' u1D563 114 '𝕤' '' u1D564 115 '𝕥' '' u1D565 116 '𝕦' '' u1D566 117 '𝕧' '' u1D567 118 '𝕨' '' u1D568 119 '𝕩' '' u1D569 120 '𝕪' '' u1D56A 121 '𝕫' '' u1D56B 122 '𝕚' '' u1D55A.dtls 123 '𝕛' '' u1D55B.dtls 124 '⫉' '' uni2AC9 125 '⫊' '' uni2ACA 126 '⁀' '' uni2040 127 '̀' '' uni0300 128 '́' '' uni0301 129 '̂' '' uni0302 130 '̃' '' uni0303 131 '̄' '' uni0304 132 '̆' '' uni0306 133 '̇' '' uni0307 134 '̈' '' uni0308 135 '̉' '' uni0309 136 '̊' '' uni030A 137 '̌' '' uni030C 138 '̐' '' uni0310 139 '̒' '' uni0312 140 '̕' '' uni0315 141 '̚' '' uni031A 142 '⃐' '' uni20D0 143 '⃑' '' uni20D1 144 '⃖' '' uni20D6 145 '⃗' '' uni20D7 146 '⃛' '' uni20DB 147 '⃜' '' uni20DC 148 '⃡' '' uni20E1 149 '⃧' '' uni20E7 150 '⃩' '' uni20E9 151 '⃰' '' uni20F0 152 '⩉' '' uni2A49 153 '⩊' '' uni2A4A 154 '⩋' '' uni2A4B 155 '⩌' '' uni2A4C 156 '⩍' '' uni2A4D 157 '⩎' '' uni2A4E 158 '⩏' '' uni2A4F 159 '⩐' '' uni2A50 160 '⩑' '' uni2A51 161 '⩒' '' uni2A52 162 '⩓' '' uni2A53 163 '⩔' '' uni2A54 164 '⩕' '' uni2A55 165 '⩖' '' uni2A56 166 '⩗' '' uni2A57 167 '⩘' '' uni2A58 168 '⩙' '' uni2A59 169 '⩚' '' uni2A5A 170 '⩛' '' uni2A5B 171 '⩜' '' uni2A5C 172 '⩝' '' uni2A5D 173 '⩞' '' uni2A5E 174 '⩟' '' uni2A5F 175 '⩠' '' uni2A60 176 '⩡' '' uni2A61 177 '⩢' '' uni2A62 178 '⩣' '' uni2A63 179 '⩤' '' uni2A64 180 '⩥' '' uni2A65 181 '⩦' '' uni2A66 182 '⩧' '' uni2A67 183 '⩨' '' uni2A68 184 '⩩' '' uni2A69 185 '⩪' '' uni2A6A 186 '⩫' '' uni2A6B 187 '⩬' '' uni2A6C 188 '⩭' '' uni2A6D 189 '⩮' '' uni2A6E 190 '⩯' '' uni2A6F 191 '⩰' '' uni2A70 192 '⩱' '' uni2A71 193 '⩲' '' uni2A72 194 '⩳' '' uni2A73 195 '⩴' '' uni2A74 196 '⩵' '' uni2A75 197 '⩶' '' uni2A76 198 '⩷' '' uni2A77 199 '⩸' '' uni2A78 200 '⩹' '' uni2A79 201 '⩺' '' uni2A7A 202 '⩻' '' uni2A7B 203 '⩼' '' uni2A7C 204 '⩽' '' uni2A7D 205 '⩾' '' uni2A7E 206 '⩿' '' uni2A7F 207 '⪀' '' uni2A80 208 '⪁' '' uni2A81 209 '⪂' '' uni2A82 210 '⪃' '' uni2A83 211 '⪄' '' uni2A84 212 '⪅' '' uni2A85 213 '⪆' '' uni2A86 214 '⪇' '' uni2A87 215 '⪈' '' uni2A88 216 '⪉' '' uni2A89 217 '⪊' '' uni2A8A 218 '⪋' '' uni2A8B 219 '⪌' '' uni2A8C 220 '⪍' '' uni2A8D 221 '⪎' '' uni2A8E 222 '⪏' '' uni2A8F 223 '⪐' '' uni2A90 224 '⪑' '' uni2A91 225 '⪒' '' uni2A92 226 '⪓' '' uni2A93 227 '⪔' '' uni2A94 228 '⪕' '' uni2A95 229 '⪖' '' uni2A96 230 '⪗' '' uni2A97 231 '⪘' '' uni2A98 232 '⪙' '' uni2A99 233 '⪚' '' uni2A9A 234 '⪛' '' uni2A9B 235 '⪜' '' uni2A9C 236 '⪝' '' uni2A9D 237 '⪞' '' uni2A9E 238 '⪟' '' uni2A9F 239 '⪠' '' uni2AA0 240 '⪡' '' uni2AA1 241 '⪢' '' uni2AA2 242 '⪣' '' uni2AA3 243 '⪤' '' uni2AA4 244 '⪥' '' uni2AA5 245 '⪦' '' uni2AA6 246 '⪧' '' uni2AA7 247 '⪨' '' uni2AA8 248 '⪩' '' uni2AA9 249 '⪪' '' uni2AAA 250 '⪫' '' uni2AAB 251 '⪬' '' uni2AAC 252 '⪭' '' uni2AAD 253 '⪮' '' uni2AAE 254 '⪱' '' uni2AB1 255 stix-mathbb 0 255 htfcss: stix-mathbb font-family: 'STIXMathBlackboard', serif;