MnSymbolB-Bold10 0 255 '↛' '' uni219B 0 % generated from MnSymbolB-Bold10, 2022-07-07-15:12 '↑̸' '' uni21910338 1 % Copyright 2022 TeX Users Group '↚' '' uni219A 2 % '↓̸' '' uni21930338 3 % This work may be distributed and/or modified under the '↗̸' '' uni21970338 4 % conditions of the LaTeX Project Public License, either '↖̸' '' uni21960338 5 % version 1.3c of this license or (at your option) any '↙̸' '' uni21990338 6 % later version. The latest version of this license is in '↘̸' '' uni21980338 7 % http://www.latex-project.org/lppl.txt '⇏' '' arrowrightdblstroke 8 % and version 1.3c or later is part of all distributions '⇑̸' '' uni21D10338 9 % of LaTeX version 2005/12/01 or later. '⇍' '' uni21CD 10 % '⇓̸' '' uni21D30338 11 % This work has the LPPL maintenance status "maintained". '⇗̸' '' uni21D70338 12 % '⇖̸' '' uni21D60338 13 % The Current Maintainer of this work '⇙̸' '' uni21D90338 14 % is the TeX4ht Project . '⇘̸' '' uni21D80338 15 % '↮' '' uni21AE 16 % If you modify this program, changing the '↕̸' '' uni21950338 17 % version identification would be appreciated. '⤡̸' '' uni29210338 18 '⤢̸' '' uni29220338 19 '⇎' '' uni21CE 20 '⇕̸' '' uni21D50338 21 '̸' '' Neswarrow_uni0338 22 '̸' '' Nwsearrow_uni0338 23 '↠̸' '' uni21A00338 24 '↟̸' '' uni219F0338 25 '↞̸' '' uni219E0338 26 '↡̸' '' uni21A10338 27 '̸' '' twoheadnearrow_uni0338 28 '̸' '' twoheadnwarrow_uni0338 29 '̸' '' twoheadswarrow_uni0338 30 '̸' '' twoheadsearrow_uni0338 31 '↣̸' '' uni21A30338 32 '̸' '' uparrowtail_uni0338 33 '↢̸' '' uni21A20338 34 '̸' '' downarrowtail_uni0338 35 '̸' '' nearrowtail_uni0338 36 '̸' '' nwarrowtail_uni0338 37 '̸' '' swarrowtail_uni0338 38 '̸' '' searrowtail_uni0338 39 '↦̸' '' uni21A60338 40 '↥̸' '' uni21A50338 41 '↤̸' '' uni21A40338 42 '↧̸' '' uni21A70338 43 '̸' '' nemapsto_uni0338 44 '̸' '' nwmapsto_uni0338 45 '̸' '' swmapsto_uni0338 46 '̸' '' semapsto_uni0338 47 '↪̸' '' uni21AA0338 48 '̸' '' lhookuparrow_uni0338 49 '̸' '' lhookleftarrow_uni0338 50 '̸' '' lhookdownarrow_uni0338 51 '̸' '' lhooknearrow_uni0338 52 '⤣̸' '' uni29230338 53 '̸' '' lhookswarrow_uni0338 54 '⤥̸' '' uni29250338 55 '̸' '' rhookrightarrow_uni0338 56 '̸' '' rhookuparrow_uni0338 57 '↩̸' '' uni21A90338 58 '̸' '' rhookdownarrow_uni0338 59 '⤤̸' '' uni29240338 60 '̸' '' rhooknwarrow_uni0338 61 '⤦̸' '' uni29260338 62 '̸' '' rhooksearrow_uni0338 63 '⇀̸' '' uni21C00338 64 '↿̸' '' uni21BF0338 65 '↽̸' '' uni21BD0338 66 '⇂̸' '' uni21C20338 67 '̸' '' neharpoonup_uni0338 68 '̸' '' nwharpoonup_uni0338 69 '̸' '' swharpoonup_uni0338 70 '̸' '' seharpoonup_uni0338 71 '⇁̸' '' uni21C10338 72 '↾̸' '' uni21BE0338 73 '↼̸' '' uni21BC0338 74 '⇃̸' '' uni21C30338 75 '̸' '' neharpoondown_uni0338 76 '̸' '' nwharpoondown_uni0338 77 '̸' '' swharpoondown_uni0338 78 '̸' '' seharpoondown_uni0338 79 '⥋̸' '' uni294B0338 80 '̸' '' updownharpoonleftright_uni0338 81 '̸' '' neswharpoonnwse_uni0338 82 '̸' '' senwharpoonnesw_uni0338 83 '⥊̸' '' uni294A0338 84 '̸' '' updownharpoonrightleft_uni0338 85 '̸' '' neswharpoonsenw_uni0338 86 '̸' '' nwseharpoonswne_uni0338 87 '⇌̸' '' uni21CC0338 88 '⥮̸' '' uni296E0338 89 '̸' '' neswharpoons_uni0338 90 '̸' '' senwharpoons_uni0338 91 '⇋̸' '' uni21CB0338 92 '⥯̸' '' uni296F0338 93 '̸' '' swneharpoons_uni0338 94 '̸' '' nwseharpoons_uni0338 95 '⇢̸' '' uni21E20338 96 '⇡̸' '' uni21E10338 97 '⇠̸' '' uni21E00338 98 '⇣̸' '' uni21E30338 99 '̸' '' dashednearrow_uni0338 100 '̸' '' dashednwarrow_uni0338 101 '̸' '' dashedswarrow_uni0338 102 '̸' '' dashedsearrow_uni0338 103 '⊸̸' '' uni22B80338 104 '⫯̸' '' uni2AEF0338 105 '⟜̸' '' uni27DC0338 106 '⫰̸' '' uni2AF00338 107 '̸' '' nespoon_uni0338 108 '̸' '' nwspoon_uni0338 109 '̸' '' swspoon_uni0338 110 '̸' '' sespoon_uni0338 111 '̸' '' rightfilledspoon_uni0338 112 '̸' '' upfilledspoon_uni0338 113 '̸' '' leftfilledspoon_uni0338 114 '̸' '' downfilledspoon_uni0338 115 '̸' '' nefilledspoon_uni0338 116 '̸' '' nwfilledspoon_uni0338 117 '̸' '' swfilledspoon_uni0338 118 '̸' '' sefilledspoon_uni0338 119 '̸' '' rightfootline_uni0338 120 '̸' '' upfootline_uni0338 121 '̸' '' leftfootline_uni0338 122 '̸' '' downfootline_uni0338 123 '̸' '' nefootline_uni0338 124 '̸' '' nwfootline_uni0338 125 '̸' '' swfootline_uni0338 126 '̸' '' sefootline_uni0338 127 '̸' '' rightfree_uni0338 128 '̸' '' upfree_uni0338 129 '̸' '' leftfree_uni0338 130 '⫝̸' '' uni2ADC 131 '̸' '' nefree_uni0338 132 '̸' '' nwfree_uni0338 133 '̸' '' swfree_uni0338 134 '̸' '' sefree_uni0338 135 '̸' '' rightpitchfork_uni0338 136 '⋔̸' '' uni22D40338 137 '̸' '' leftpitchfork_uni0338 138 '⫛̸' '' uni2ADB0338 139 '̸' '' nepitchfork_uni0338 140 '̸' '' nwpitchfork_uni0338 141 '̸' '' swpitchfork_uni0338 142 '̸' '' sepitchfork_uni0338 143 '⇉̸' '' uni21C90338 144 '⇈̸' '' uni21C80338 145 '⇇̸' '' uni21C70338 146 '⇊̸' '' uni21CA0338 147 '̸' '' nenearrows_uni0338 148 '̸' '' nwnwarrows_uni0338 149 '̸' '' swswarrows_uni0338 150 '̸' '' sesearrows_uni0338 151 '⇄̸' '' uni21C40338 152 '̸' '' updownarrows_uni0338 153 '̸' '' neswarrows_uni0338 154 '̸' '' nwsearrows_uni0338 155 '⇆̸' '' uni21C60338 156 '̸' '' downuparrows_uni0338 157 '̸' '' swnearrows_uni0338 158 '̸' '' senwarrows_uni0338 159 '↝̸' '' uni219D0338 160 '̸' '' uplsquigarrow_uni0338 161 '̸' '' leftlsquigarrow_uni0338 162 '̸' '' downlsquigarrow_uni0338 163 '̸' '' nelsquigarrow_uni0338 164 '̸' '' nwlsquigarrow_uni0338 165 '̸' '' swlsquigarrow_uni0338 166 '̸' '' selsquigarrow_uni0338 167 '̸' '' rightrsquigarrow_uni0338 168 '̸' '' uprsquigarrow_uni0338 169 '↜̸' '' uni219C0338 170 '̸' '' downrsquigarrow_uni0338 171 '̸' '' nersquigarrow_uni0338 172 '̸' '' nwrsquigarrow_uni0338 173 '̸' '' swrsquigarrow_uni0338 174 '̸' '' sersquigarrow_uni0338 175 '̸' '' squigarrowleftright_uni0338 176 '̸' '' squigarrowupdown_uni0338 177 '̸' '' squigarrowrightleft_uni0338 178 '̸' '' squigarrowdownup_uni0338 179 '̸' '' squigarrownesw_uni0338 180 '̸' '' squigarrownwse_uni0338 181 '̸' '' squigarrowswne_uni0338 182 '̸' '' squigarrowsenw_uni0338 183 '↷̸' '' uni21B70338 184 '̸' '' lcurvearrowup_uni0338 185 '̸' '' lcurvearrowleft_uni0338 186 '⤸̸' '' uni29380338 187 '̸' '' lcurvearrowne_uni0338 188 '̸' '' lcurvearrownw_uni0338 189 '̸' '' lcurvearrowsw_uni0338 190 '̸' '' lcurvearrowse_uni0338 191 '̸' '' rcurvearrowright_uni0338 192 '̸' '' rcurvearrowup_uni0338 193 '↶̸' '' uni21B60338 194 '⤹̸' '' uni29390338 195 '̸' '' rcurvearrowne_uni0338 196 '̸' '' rcurvearrownw_uni0338 197 '̸' '' rcurvearrowsw_uni0338 198 '̸' '' rcurvearrowse_uni0338 199 '̸' '' curvearrowleftright_uni0338 200 '̸' '' curvearrowupdown_uni0338 201 '̸' '' curvearrowrightleft_uni0338 202 '̸' '' curvearrowdownup_uni0338 203 '̸' '' curvearrownesw_uni0338 204 '̸' '' curvearrownwse_uni0338 205 '̸' '' curvearrowswne_uni0338 206 '̸' '' curvearrowsenw_uni0338 207 '̸' '' leftrightline_uni0338 208 '∤' '' uni2224 209 '̸' '' neswline_uni0338 210 '̸' '' nwseline_uni0338 211 '̸' '' Leftrightline_uni0338 212 '∦' '' notparallel 213 '̸' '' Neswline_uni0338 214 '̸' '' Nwseline_uni0338 215 '⊬' '' uni22AC 216 '̸' '' perpendicular_uni0338 217 '⊣̸' '' uni22A30338 218 '⊤̸' '' uni22A40338 219 '̸' '' nevdash_uni0338 220 '̸' '' nwvdash_uni0338 221 '̸' '' swvdash_uni0338 222 '̸' '' sevdash_uni0338 223 '⊭' '' uni22AD 224 '̸' '' upmodels_uni0338 225 '̸' '' leftmodels_uni0338 226 '̸' '' downmodels_uni0338 227 '̸' '' nemodels_uni0338 228 '̸' '' nwmodels_uni0338 229 '̸' '' swmodels_uni0338 230 '̸' '' semodels_uni0338 231 '⊮' '' uni22AE 232 '⍊̸' '' uni234A0338 233 '̸' '' leftVdash_uni0338 234 '⍑̸' '' uni23510338 235 '̸' '' neVdash_uni0338 236 '̸' '' nwVdash_uni0338 237 '̸' '' swVdash_uni0338 238 '̸' '' seVdash_uni0338 239 '⊯' '' uni22AF 240 '̸' '' upModels_uni0338 241 '̸' '' leftModels_uni0338 242 '̸' '' downModels_uni0338 243 '̸' '' neModels_uni0338 244 '̸' '' nwModels_uni0338 245 '̸' '' swModels_uni0338 246 '̸' '' seModels_uni0338 247 '⤿̸' '' uni293F0338 248 '↺̸' '' uni21BA0338 249 '⟲̸' '' uni27F20338 250 '̸' '' rcirclearrowdown_uni0338 251 '⟳̸' '' uni27F30338 252 '↻̸' '' uni21BB0338 253 '⤾̸' '' uni293E0338 254 '̸' '' lcirclearrowdown_uni0338 255 MnSymbolB-Bold10 0 255 htfcss: MnSymbolB-Bold10 font-weight: bold; font-family: 'MnSymbol', serif;