% tkz-obj-lua-circles.tex % Copyright 2024 Alain Matthes % This work may be distributed and/or modified under the % conditions of the LaTeX Project Public License, either version 1.3 % of this license or (at your option) any later version. % The latest version of this license is in % http://www.latex-project.org/lppl.txt % and version 1.3 or later is part of all distributions of LaTeX % version 2005/12/01 or later. % This work has the LPPL maintenance status “maintained”. % The Current Maintainer of this work is Alain Matthes. \def\fileversion{5.10c} \def\filedate{2024/04/19} \typeout{2024/04/19 5.10c tkz-obj-lua-circles.tex} \makeatletter %<--------------------------------------------------------------------------–> % tkzCircle center and one point %<--------------------------------------------------------------------------–> % attention radius circle is defined by center and a point on the circle % R defined by center and the value of the radius % no need to define a circle with R tikz uses this method. % through instead of radius \def\tkz@numc{0} \pgfkeys{/tkzcircle/.cd, R/.code = \def\tkz@numc{0}, diameter/.code = \def\tkz@numc{1}, circum/.code = \def\tkz@numc{2}, in/.code = \def\tkz@numc{3}, ex/.code = \def\tkz@numc{4}, euler/.code = \def\tkz@numc{5}, nine/.code = \def\tkz@numc{5}, apollonius/.code = \def\tkz@numc{6}, spieker/.code = \def\tkz@numc{7}, orthogonal from/.code args = {#1}{\gdef\tkz@numc{8} \def\tkz@ptfrom{#1}}, orthogonal through/.code args = {#1 and #2}{\gdef\tkz@numc{9} \def\tkz@ptone{#1} \def\tkz@pttwo{#2}}, K/.code = \def\tkz@koeff{#1}, K = 1, circum } \def\tkzDefCircle{\pgfutil@ifnextchar[{\tkz@DefCircle}{\tkz@DefCircle[]}} \def\tkz@DefCircle[#1](#2){% \begingroup \pgfqkeys{/tkzcircle}{#1} \ifcase\tkz@numc% \tkzDefCircleR(#2) \or% 1 \tkzDefCircleD(#2) \or% 2 \tkzDefCircumCircle(#2) \or% 3 \tkzDefInCircle(#2) \or% 4 \tkzDefExCircle(#2) \or% 5 \tkzDefEulerCircle(#2) \or% 6 \tkzDefApolloniusCircle(#2) \or% 7 \tkzDefSpiekerCircle(#2) \or% 8 \tkzDefOrthogonalCircle(#2,\tkz@ptfrom) \or% 9 \tkzDefOrthoThroughCircle(#2,\tkz@ptone,\tkz@pttwo) \fi \endgroup } %for compatibility %<--------------------------------------------------------------------------–> % R %<--------------------------------------------------------------------------–> \def\tkzDefCircleR(#1,#2){% \begingroup \edef\tkzLengthResult{\fpeval{round(#2,5)}} \global\let\tkzLengthResult\tkzLengthResult \path (#1)--++(\tkzLengthResult,0) coordinate (tkzSecondPointResult); \tkzRenamePoint(tkzSecondPointResult){tkzPointResult} \endgroup } %<--------------------------------------------------------------------------–> % Diameter Circle %<--------------------------------------------------------------------------–> \def\tkzDefCircleD(#1,#2){% \begingroup \tkzDefMidPoint(#1,#2) \pgfnodealias{tkzFirstPointResult}{tkzPointResult} \pgfnodealias{tkzSecondPointResult}{#2} \tkz@@CalcLengthcm(#1,tkzPointResult){tkzLengthResult} \endgroup } %<--------------------------------------------------------------------------–> % Circum Circle %<--------------------------------------------------------------------------–> \def\tkzDefCircumCircle(#1,#2,#3){% \begingroup \tkzCircumCenter(#1,#2,#3) \tkzRenamePoint(tkzPointResult){tkzFirstPointResult} \tkzRenamePoint(#1){tkzSecondPointResult} \tkz@@CalcLengthcm(#1,tkzPointResult){tkzLengthResult}%3.06 add [cm] \endgroup } %<--------------------------------------------------------------------------–> % In(scribe) Circle %<--------------------------------------------------------------------------–> \def\tkzDefInCircle(#1,#2,#3){% \begingroup \tkzInCenter(#1,#2,#3) \pgfnodealias{tkz@incenter}{tkzPointResult} \tkzUProjection(#1,#3)(tkz@incenter) \pgfnodealias{tkzSecondPointResult}{tkzPointResult} \tkz@@CalcLengthcm(tkzPointResult,tkz@incenter){tkzLengthResult} \pgfnodealias{tkzPointResult}{tkz@incenter} \pgfnodealias{tkzFirstPointResult}{tkz@incenter} \endgroup } %<--------------------------------------------------------------------------–> % Ex(scribe) Circle %<--------------------------------------------------------------------------–> \def\tkzDefExCircle(#1,#2,#3){% \begingroup \tkzExCenter(#1,#2,#3) \pgfnodealias{tkz@excenter}{tkzPointResult} \tkzUProjection(#1,#3)(tkz@excenter) \pgfnodealias{tkzSecondPointResult}{tkzPointResult} \tkz@@CalcLengthcm(tkzPointResult,tkz@excenter){tkzLengthResult}% for tkzGetLength \pgfnodealias{tkzPointResult}{tkz@excenter} \pgfnodealias{tkzFirstPointResult}{tkz@excenter} \endgroup } %<--------------------------------------------------------------------------–> % Radius Ex Circle %<--------------------------------------------------------------------------–> \def\tkzDefExRadius(#1,#2,#3){% \begingroup \tkzExCenter(#1,#2,#3) \tkzUProjection(#1,#3)(tkzPointResult) \endgroup } %<--------------------------------------------------------------------------–> % The nine-point circle, also called Euler's circle or the Feuerbach circle % best way Ma,Mb,Mc circum center 2020 %<--------------------------------------------------------------------------–> \def\tkzDefEulerCircle(#1,#2,#3){% \begingroup \tkzDefMidPoint(#1,#2) \pgfnodealias{tkz@e1}{tkzPointResult} \tkzDefMidPoint(#2,#3) \pgfnodealias{tkz@e2}{tkzPointResult} \tkzDefMidPoint(#1,#3) \pgfnodealias{tkz@e3}{tkzPointResult} \tkzCircumCenter(tkz@e1,tkz@e2,tkz@e3) \pgfnodealias{tkzFirstPointResult}{tkzPointResult} \tkzRenamePoint(tkz@e1){tkzSecondPointResult} \tkz@@CalcLengthcm(tkzPointResult,tkz@e1){tkzLengthResult} \endgroup } \let\tkzDefNinePointsCircle\tkzEulerCircle% \let\tkzFeuerBachCircle\tkzEulerCircle% \def\tkzDefEulerRadius(#1,#2,#3){% \begingroup \tkzEulerCenter(#1,#2,#3) \pgfnodealias{eur@pta}{tkzPointResult} \tkzDefMidPoint(#1,#2) \tkz@@CalcLengthcm(eur@pta,tkzPointResult){tkzLengthResult} \endgroup } %<--------------------------------------------------------------------------–> % Apollonius circle %<--------------------------------------------------------------------------–> \def\tkzDefApolloniusCircle(#1,#2){% \begingroup \tkzDefBarycentricPointTwo(#1,1,#2,\tkz@koeff) \pgfnodealias{apo@pta}{tkzPointResult} \pgfnodealias{tkzSecondPointResult}{tkzPointResult} \tkzDefBarycentricPointTwo(#1,1,#2,-\tkz@koeff) \pgfnodealias{apo@ptb}{tkzPointResult} \tkzDefMidPoint(apo@pta,apo@ptb) \pgfnodealias{tkzFirstPointResult}{tkzPointResult} \tkz@@CalcLengthcm(tkzFirstPointResult,apo@pta){tkzLengthResult} \pgfnodealias{tkzThirdPointResult}{apo@ptb} \endgroup } %<--------------------------------------------------------------------------–> \def\tkzDefOrthogonalCircle(#1,#2,#3){% \begingroup \tkzTgtFromP(#1,#2)(#3) \tkz@@CalcLengthcm(#1,tkzFirstPointResult){tkzLengthResult} \endgroup } %<--------------------------------------------------------------------------–> \def\tkzDefOrthoThroughCircle(#1,#2,#3,#4){% \begingroup \tkz@@CalcLengthcm(#1,#3){tkz@lnb}% \edef\tkz@lnc{\fpeval{1/\tkz@lnb}} \tkzVecKNorm[\tkz@lnc](#1,#3) \pgfnodealias{tkz@PointResult}{tkzPointResult} \tkzCircumCenter(tkz@PointResult,#3,#4) \tkz@@CalcLengthcm(tkzPointResult,#3){tkzLengthResult} \pgfnodealias{tkzFirstPointResult}{tkzPointResult} \pgfnodealias{tkzSecondPointResult}{#3} \endgroup } %<--------------------------------------------------------------------------–> % Spieker Circle %<--------------------------------------------------------------------------–> \def\tkzDefSpiekerCircle(#1,#2,#3){% \begingroup \tkzSpiekerCenter(#1,#2,#3) \pgfnodealias{tkzFirstPointResult}{tkzPointResult} \tkzUProjection(tkz@m1,tkz@m2)(tkzPointResult) \pgfnodealias{tkzSecondPointResult}{tkzPointResult} \tkz@@CalcLength(tkzSecondPointResult,tkzFirstPointResult){tkzLengthResult} \endgroup } %<--------------------------------------------------------------------------–> %<--------------------------------------------------------------------------–> % End Def Circle %<--------------------------------------------------------------------------–> \makeatother \endinput