% tkz-obj-eu-circles.tex % Copyright 2024 Alain Matthes % This work may be distributed and/or modified under the % conditions of the LaTeX Project Public License, either version 1.3 % of this license or (at your option) any later version. % The latest version of this license is in % http://www.latex-project.org/lppl.txt % and version 1.3 or later is part of all distributions of LaTeX % version 2005/12/01 or later. % This work has the LPPL maintenance status “maintained”. % The Current Maintainer of this work is Alain Matthes. \def\fileversion{6.00} \def\filedate{2024/04/19} \typeout{2024/04/19 6.00 tkz-obj-eu-circles.tex} \makeatletter %<--------------------------------------------------------------------------–> % tkzCircle center and one point %<--------------------------------------------------------------------------–> % attention radius circle is defined by center and a point on the circle % R defined by center and the value of the radius % no need to define a circle with R tikz uses this method. % through instead of radius \def\tkz@numcby{0} \pgfkeys{/tkzDefCircleBy/.cd, translation/.code args = {from #1 to #2} { \def\tkz@numcby{0} \def\tkzfrom{#1} \def\tkzto{#2}}, homothety/.code args = {center #1 ratio #2}{ \def\tkz@numcby{1} \def\tkzcenter{#1} \def\tkzratio{#2}}, reflection/.code args = {over #1--#2}{ \def\tkz@numcby{2} \def\tkzdeb{#1} \def\tkzfin{#2}}, symmetry/.code args = {center #1}{ \def\tkz@numcby{3} \def\tkzcenter{#1}}, rotation/.code args = {center #1 angle #2}{ \def\tkz@numcby{4} \def\tkzcenter{#1} \def\tkzangle{#2}}, inversion/.code args={center #1 through #2}{ \def\tkz@numcby{5} \def\tkzcenter{#1} \def\tkzpoint{#2}}, inversion negative/.code args = {center #1 through #2}{\def\tkz@numcby{6} \def\tkzcenter{#1} \def\tkzpoint{#2}} } \def\tkzDefCircleBy{\pgfutil@ifnextchar[{\tkz@DefCircleBy}{\tkz@DefCircleBy[]}} \def\tkz@DefCircleBy[#1](#2){% \begingroup \pgfqkeys{/tkzDefCircleBy}{#1} \ifcase\tkz@numcby% \tkzDefCircleTranslation(#2)% \or% 1 \tkzDefCircleHomothety(#2) \or% 2 \tkzDefCircleReflection(#2) \or% 3 \tkzDefCircleSymmetry(#2) \or% 4 \tkzDefCircleRotation(#2) \or% 5 \tkzDefInversionCircle(#2,\tkzcenter,\tkzpoint) \or% 6 \tkzDefInversionNegativeCircle(#2,\tkzcenter,\tkzpoint) \fi \endgroup } %<--------------------------------------------------------------------------–> \def\tkzDefCircleTranslation(#1,#2){% \begingroup \tkzUTranslation(\tkzfrom,\tkzto)(#1) \pgfnodealias{tkzFirstPointResult}{tkzPointResult} \tkzUTranslation(\tkzfrom,\tkzto)(#2) \pgfnodealias{tkzSecondPointResult}{tkzPointResult} \endgroup } %<--------------------------------------------------------------------------–> \def\tkzDefCircleHomothety(#1,#2){% \begingroup \tkzUHomo(\tkzcenter,\tkzratio)(#1) \pgfnodealias{tkzFirstPointResult}{tkzPointResult} \tkzUHomo(\tkzcenter,\tkzratio)(#2) \pgfnodealias{tkzSecondPointResult}{tkzPointResult} \endgroup } %<--------------------------------------------------------------------------–> \def\tkzDefCircleReflection(#1,#2){% \begingroup \tkzUSymOrth(\tkzdeb,\tkzfin)(#1) \pgfnodealias{tkzFirstPointResult}{tkzPointResult} \tkzUSymOrth(\tkzdeb,\tkzfin)(#2) \pgfnodealias{tkzSecondPointResult}{tkzPointResult} \endgroup } %<--------------------------------------------------------------------------–> \def\tkzDefCircleSymmetry(#1,#2){% \begingroup \tkzUCSym(\tkzcenter)(#1) \pgfnodealias{tkzFirstPointResult}{tkzPointResult} \tkzUCSym(\tkzcenter)(#2) \pgfnodealias{tkzSecondPointResult}{tkzPointResult} \endgroup } %<--------------------------------------------------------------------------–> \def\tkzDefCircleRotation(#1,#2){% \begingroup \tkzURotateAngle(\tkzcenter,\tkzangle)(#1) \pgfnodealias{tkzFirstPointResult}{tkzPointResult} \tkzURotateAngle(\tkzcenter,\tkzangle)(#2) \pgfnodealias{tkzSecondPointResult}{tkzPointResult} \endgroup } %<--------------------------------------------------------------------------–> % #3,#4 cercle d'inversion centre #3. through #4 % Si le cercle passe par le pôle l'image est une droite \def\tkzDefInversionCircle(#1,#2,#3,#4){% \begingroup \tkz@@CalcLengthcm(#1,#2){tkz@lna}% \tkz@@CalcLengthcm(#1,#3){tkz@lnb}% \edef\tkzMathResult{\tkz@Dec{\tkz@Round{\tkz@Abs{\tkz@lnb - \tkz@lna}}{6}}} \ifdim\tkzMathResult pt < 0.00001 pt\relax% \tkzURotateAngle(#1,-90)(#2) \pgfnodealias{tkz@a}{tkzPointResult} \tkzUInversePoint(#3,#4)(tkz@a) \pgfnodealias{tkzFirstPointResult}{tkzPointResult} \tkzUInversePoint(#3,#4)(#2) \pgfnodealias{tkzSecondPointResult}{tkzPointResult} \else \tkzURotateAngle(#1,90)(#2) \pgfnodealias{tkz@a}{tkzPointResult} \tkzURotateAngle(#1,-90)(#2) \pgfnodealias{tkz@b}{tkzPointResult} \tkzUInversePoint(#3,#4)(tkz@a) \pgfnodealias{tkz@p1}{tkzPointResult} \tkzUInversePoint(#3,#4)(tkz@b) \pgfnodealias{tkz@p2}{tkzPointResult} \tkzUInversePoint(#3,#4)(#2) \pgfnodealias{tkz@p3}{tkzPointResult} \tkzDefCircle[circum](tkz@p3,tkz@p1,tkz@p2) \fi \endgroup } %<--------------------------------------------------------------------------–> \def\tkzDefInversionNegativeCircle(#1,#2,#3,#4){% \begingroup \tkzDefInversionCircle(#1,#2,#3,#4) \tkzUCSym(\tkzcenter)(tkzFirstPointResult) \pgfnodealias{tkzFirstPointResult}{tkzPointResult} \tkzUCSym(\tkzcenter)(tkzSecondPointResult) \pgfnodealias{tkzSecondPointResult}{tkzPointResult} \endgroup } %<--------------------------------------------------------------------------–> % End Def Circle %<--------------------------------------------------------------------------–> \makeatother \endinput